Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_4742eb56b221f90335a690fcb8cba8b9 Trinexapac-ethyl [M+Na]+ 275.089 164.83 CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 Organic acids and derivatives 1 29 TW polyala
CCSBASE_ec21a09acc136af9f05a50baf7abb29f Diisopropyl methylphosphonate [M+Na]+ 203.0807 153.88 CC(C)OP(=O)(C)OC(C)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_c79d8b2f3c51142693c4814645f20ba8 1-tert-Butyl-3,4,5-trimethyl-2,6-dinitrobenzene [M+H-H2O]+ 249.1234 154.56 CC1=C(C(=C(C(=C1C)[N+](=O)[O-])C(C)(C)C)[N+](=O)[O-])C Benzenoids 1 29 TW polyala
CCSBASE_3e7af57b60ad53f4f1fda22d72ebb16a 2-Chlorobenzamide [M+H]+ 156.0211 125.22 C1=CC=C(C(=C1)C(=O)N)Cl Benzenoids 1 29 TW polyala
CCSBASE_72a8081409650eb63055c44a7ed6eca4 Fipexide hydrochloride [M+H]+ 389.1263 188.51 C1CN(CCN1CC2=CC3=C(C=C2)OCO3)C(=O)COC4=CC=C(C=C4)Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_9f048020f68a36441e18743bc152ac7e 2,4-D isopropyl ester [M+Na]+ 285.0056 165.02 CC(C)OC(=O)COC1=C(C=C(C=C1)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_faf01ba09054afca2649da3f38fe5f8d 3-Hydroxy-4-butyrophenetidide [M+H]+ 224.1281 153.72 CCOC1=CC=C(C=C1)NC(=O)CC(C)O Benzenoids 1 29 TW polyala
CCSBASE_58978d31242be9b8a7dcfddf2a7d8135 3-Hydroxy-4-butyrophenetidide [M+H-H2O]+ 206.1176 148.87 CCOC1=CC=C(C=C1)NC(=O)CC(C)O Benzenoids 1 29 TW polyala
CCSBASE_d6da18e37dfb14e9c29ad022a078dead 3-Hydroxy-4-butyrophenetidide [M+Na]+ 246.1101 166.12 CCOC1=CC=C(C=C1)NC(=O)CC(C)O Benzenoids 1 29 TW polyala
CCSBASE_a3dd61dd41608194255055726d84cf0f Cetylpyridinium bromide [M]+ 304.2999 197.25 CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2270 2271 2272 2273 2274 2275 2276 ... 2315 2316