Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_c1f4328bec1721a3abed6a50feb68db9 Corticosterone [M+Na]+ 369.2036 206.78 CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_2cdf299d300dd32d6a6503b69e2193f1 Epoxiconazole [M+H]+ 330.0804 172.14 C1=CC=C(C(=C1)C2C(O2)(CN3C=NC=N3)C4=CC=C(C=C4)F)Cl Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_e7f8c29cfde9d86df8d6199834d4ac05 Epoxiconazole [M+H-H2O]+ 312.0699 165.84 C1=CC=C(C(=C1)C2C(O2)(CN3C=NC=N3)C4=CC=C(C=C4)F)Cl Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_7e4e52ca1b9936a1841f0db1dd1661a4 3,3'-Sulphonyldianiline [M+H]+ 249.0692 153.71 C1=CC(=CC(=C1)S(=O)(=O)C2=CC=CC(=C2)N)N Benzenoids 1 29 TW polyala
CCSBASE_e6aca52f520839f1c3efc1454eb85f35 3,3'-Sulphonyldianiline [M+H]+ 249.0692 168.05 C1=CC(=CC(=C1)S(=O)(=O)C2=CC=CC(=C2)N)N Benzenoids 1 29 TW polyala
CCSBASE_943b8f08c23fb5ebeb226fc2600ba968 3,3'-Sulphonyldianiline [M+Na]+ 271.0512 169.58 C1=CC(=CC(=C1)S(=O)(=O)C2=CC=CC(=C2)N)N Benzenoids 1 29 TW polyala
CCSBASE_a3705f81d8ed307369e12bf098049bf6 Azinphos-ethyl [M+Na]+ 368.0263 175.05 CCOP(=S)(OCC)SCN1C(=O)C2=CC=CC=C2N=N1 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_ddca4bf33b35b0d1b01aad5e21e281b3 SR271425 [M+H]+ 414.1846 193.61 CCN(CC)CCNC1=C2C(=C(C=C1)CNC=O)SC3=C(C2=O)C=C(C=C3)OC Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_159c2eaebc71ac37d88b2e023f3b56f5 SR271425 [M+Na]+ 436.1665 195.59 CCN(CC)CCNC1=C2C(=C(C=C1)CNC=O)SC3=C(C2=O)C=C(C=C3)OC Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_a5395c60ac754f7291d5008e677344cc Trinexapac-ethyl [M+H]+ 253.107 154.19 CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 Organic acids and derivatives 1 29 TW polyala
1 2 ... 2269 2270 2271 2272 2273 2274 2275 ... 2315 2316