Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_6e79c7f2234bbecd8d727c8f73e9d2ad alpha-Naphthoflavone [M+Na]+ 295.0729 182.54 C1=CC=C(C=C1)C2=CC(=O)C3=C(O2)C4=CC=CC=C4C=C3 Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_77e52e2a0a7e40868e5fcdadcc12f2c7 Cridanimod [M+Na]+ 276.0631 152.87 C1=CC=C2C(=C1)C(=O)C3=CC=CC=C3N2CC(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_7a747256eec25b059240d75a506547cc 3-(Ethyl(3-methylphenyl)amino)propanenitrile [M+H]+ 189.1386 145.34 CCN(CCC#N)C1=CC=CC(=C1)C Benzenoids 1 29 TW polyala
CCSBASE_9467c1b79b2326c62d1dcfffa07394a4 1-Nitroanthraquinone [M+H]+ 254.0448 143.46 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=CC=C3)[N+](=O)[O-] Benzenoids 1 29 TW polyala
CCSBASE_79c780c8554e27a6644e931a2c49ffc1 Volinanserin [M+H]+ 374.2126 188.21 COC1=CC=CC(=C1OC)C(C2CCN(CC2)CCC3=CC=C(C=C3)F)O Benzenoids 1 29 TW polyala
CCSBASE_22bfccaad46c2ae58b514c5c132b7ee3 Volinanserin [M+H-H2O]+ 356.2021 185.86 COC1=CC=CC(=C1OC)C(C2CCN(CC2)CCC3=CC=C(C=C3)F)O Benzenoids 1 29 TW polyala
CCSBASE_734fa46b57b73cb9bad823c68ca73442 Dimethametryn [M+H]+ 256.159 165.59 CCNC1=NC(=NC(=N1)SC)NC(C)C(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_1ead09798ec49373e221e51906b15ca8 Metolachlor OA [M+H]+ 280.1543 159.99 CCC1=CC=CC(=C1N(C(C)COC)C(=O)C(=O)O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_f3353f0f5b46273c81cc1aaa960f626e Metolachlor OA [M+H-H2O]+ 262.1438 157.33 CCC1=CC=CC(=C1N(C(C)COC)C(=O)C(=O)O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_bf44b9a85aea8503bfdfa0d30e0cffb1 Tributyl phosphate [M+Na]+ 289.1539 182.71 CCCCOP(=O)(OCCCC)OCCCC Organic acids and derivatives 1 29 TW polyala
1 2 ... 2273 2274 2275 2276 2277 2278 2279 ... 2315 2316