Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_53b2089f33be00c296ecfa78d22f2dc0 Bis(p-methylbenzylidene)sorbitol [M+H]+ 387.1802 190.39 CC1=CC=C(C=C1)C2OCC3C(O2)C(OC(O3)C4=CC=C(C=C4)C)C(CO)O Benzenoids 1 29 TW polyala
CCSBASE_0d1136b236453c69491da6736fda1636 Bis(p-methylbenzylidene)sorbitol [M+H-H2O]+ 369.1697 185.33 CC1=CC=C(C=C1)C2OCC3C(O2)C(OC(O3)C4=CC=C(C=C4)C)C(CO)O Benzenoids 1 29 TW polyala
CCSBASE_f6e24c9904087d331bd2ee23621d1722 Bis(p-methylbenzylidene)sorbitol [M+K]+ 425.1361 192.33 CC1=CC=C(C=C1)C2OCC3C(O2)C(OC(O3)C4=CC=C(C=C4)C)C(CO)O Benzenoids 1 29 TW polyala
CCSBASE_5030820b7fa4f1b68cdf32bf2ef9efb6 Bis(p-methylbenzylidene)sorbitol [M+Na]+ 409.1622 190.85 CC1=CC=C(C=C1)C2OCC3C(O2)C(OC(O3)C4=CC=C(C=C4)C)C(CO)O Benzenoids 1 29 TW polyala
CCSBASE_a0734edbb6e3ad4161410c1675688a30 6-Acetyl-1,2,3,4-tetrahydronaphthalene [M+H]+ 175.1117 138.62 CC(=O)C1=CC2=C(CCCC2)C=C1 Benzenoids 1 29 TW polyala
CCSBASE_3e047c37bc54b8e65f4d0322cd51a2f9 Acid Red 337 [M+H]+ 412.0573 186.78 C1=CC=C(C(=C1)C(F)(F)F)N=NC2=C(C=CC3=CC(=CC(=C32)O)S(=O)(=O)[O-])N Benzenoids 1 29 TW polyala
CCSBASE_7a3c191fe1e9f073b81c2744acfe69ef Acid Red 337 [M+K]+ 450.0132 203.07 C1=CC=C(C(=C1)C(F)(F)F)N=NC2=C(C=CC3=CC(=CC(=C32)O)S(=O)(=O)[O-])N Benzenoids 1 29 TW polyala
CCSBASE_ceead15ee44dd15003fcebe008853a74 Acid Red 337 [M+Na]+ 434.0393 201.76 C1=CC=C(C(=C1)C(F)(F)F)N=NC2=C(C=CC3=CC(=CC(=C32)O)S(=O)(=O)[O-])N Benzenoids 1 29 TW polyala
CCSBASE_558253c32a61055692f6e9de21dd3cea Acid Red 337 [M+Na]+ 434.0393 207.53 C1=CC=C(C(=C1)C(F)(F)F)N=NC2=C(C=CC3=CC(=CC(=C32)O)S(=O)(=O)[O-])N Benzenoids 1 29 TW polyala
CCSBASE_85e8eae088578b6dfbfe18f2f8ceeef3 N-(2-Methoxyphenyl)-3-oxobutanamide [M+H]+ 208.0968 142.86 CC(=O)CC(=O)NC1=CC=CC=C1OC Benzenoids 1 29 TW polyala
1 2 ... 2271 2272 2273 2274 2275 2276 2277 ... 2315 2316