Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_6f27f9fe01aaaecc0732f9b181a2b3e3 Androsterone [M+H-H2O]+ 273.2214 166.16 CC12CCC(CC1CCC3C2CCC4(C3CCC4=O)C)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_08d4688ce48c3794a77b3db59abdd730 Androsterone [M+Na]+ 313.2138 181.7 CC12CCC(CC1CCC3C2CCC4(C3CCC4=O)C)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_8452c8db2c622e62e55a4f3ff70d1125 Metaflumizone [M+H]+ 507.125 209.06 C1=CC(=CC(=C1)C(F)(F)F)C(=NNC(=O)NC2=CC=C(C=C2)OC(F)(F)F)CC3=CC=C(C=C3)C#N Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_0a69c18537ed0cb51ff413c8c4e4d529 Metaflumizone [M+Na]+ 529.107 217.44 C1=CC(=CC(=C1)C(F)(F)F)C(=NNC(=O)NC2=CC=C(C=C2)OC(F)(F)F)CC3=CC=C(C=C3)C#N Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_8fc37113054f39fd17deaf2a7cf4ee8f Diethylene glycol dibenzoate [M+Na]+ 337.1046 178.27 C1=CC=C(C=C1)C(=O)OCCOCCOC(=O)C2=CC=CC=C2 Benzenoids 1 29 TW polyala
CCSBASE_9bebadbf19c1ae40b11a9eea0e198e27 Theophylline [M+H]+ 181.072 133.79 CN1C2=C(C(=O)N(C1=O)C)NC=N2 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_73b41f348781b207c730780a35da95d4 Theophylline [M+Na]+ 203.0539 142.55 CN1C2=C(C(=O)N(C1=O)C)NC=N2 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_319ccbdfb094da1e1d7734731a38112e Corticosterone [M+H]+ 347.2217 183.01 CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_df8d0c303d6f4e88cb759958bcaade16 Corticosterone [M+H-H2O]+ 329.2112 178.45 CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_9d404ea9fa2f764d9180286e3c17666b Corticosterone [M+Na]+ 369.2036 178.36 CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C)O Lipids and lipid-like molecules 1 29 TW polyala
1 2 ... 2268 2269 2270 2271 2272 2273 2274 ... 2315 2316