Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_d03bd8d90e28d597b137b9100c2484cc Sarafloxacin [M+K]+ 424.087 199.44 C1CN(CCN1)C2=C(C=C3C(=C2)N(C=C(C3=O)C(=O)O)C4=CC=C(C=C4)F)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_16c7b0da1ec18a3ed89822c4083a676e Sarafloxacin [M+Na]+ 408.113 199.21 C1CN(CCN1)C2=C(C=C3C(=C2)N(C=C(C3=O)C(=O)O)C4=CC=C(C=C4)F)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_429c92a4e5d5291f4c140230ca2e7b99 1-Amino-4-bromo-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid [M+H]+ 381.9379 168.7 C1=CC=C2C(=C1)C(=O)C3=C(C=C(C(=C3C2=O)N)S(=O)(=O)O)Br Benzenoids 1 29 TW polyala
CCSBASE_347fc772ceac6004fbccb45c6dba6a51 1-Amino-4-bromo-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid [M+Na]+ 403.9199 183.25 C1=CC=C2C(=C1)C(=O)C3=C(C=C(C(=C3C2=O)N)S(=O)(=O)O)Br Benzenoids 1 29 TW polyala
CCSBASE_7de8f8d659b2868e4cc7ef4107a46346 Exifone [M+H]+ 279.0499 158.06 C1=CC(=C(C(=C1C(=O)C2=CC(=C(C(=C2)O)O)O)O)O)O Benzenoids 1 29 TW polyala
CCSBASE_ed2a8a239941a8bf1a3c9100af49d58e Exifone [M+Na]+ 301.0319 174.72 C1=CC(=C(C(=C1C(=O)C2=CC(=C(C(=C2)O)O)O)O)O)O Benzenoids 1 29 TW polyala
CCSBASE_a818d6b132d977d59a6aaa37ff9b4444 Benzimidazole [M+H]+ 119.0604 127.62 C1=CC=C2C(=C1)NC=N2 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_300dea7b0392f967f17009e2990b5fc6 4-(Hydroxymethyl)-4-methyl-1-phenylpyrazolidin-3-one [M+H]+ 207.1128 145.16 CC1(CN(NC1=O)C2=CC=CC=C2)CO Benzenoids 1 29 TW polyala
CCSBASE_be22e7cc55e4649fbfb6b1a4d23649fe 4-(Hydroxymethyl)-4-methyl-1-phenylpyrazolidin-3-one [M+H-H2O]+ 189.1023 141.18 CC1(CN(NC1=O)C2=CC=CC=C2)CO Benzenoids 1 29 TW polyala
CCSBASE_941feb70e5a57e6e9ccf946e352cf358 4-(Hydroxymethyl)-4-methyl-1-phenylpyrazolidin-3-one [M+Na]+ 229.0947 157.38 CC1(CN(NC1=O)C2=CC=CC=C2)CO Benzenoids 1 29 TW polyala
1 2 ... 2265 2266 2267 2268 2269 2270 2271 ... 2315 2316