Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_bfd70c53b65f43f0f20df79606d3b571 Metoprolol [M+H-H2O]+ 250.1802 165.97 CC(C)NCC(COC1=CC=C(C=C1)CCOC)O Benzenoids 1 29 TW polyala
CCSBASE_e1d137b2b2dc9784d055cde12c864f59 Metoprolol [M+Na]+ 290.1727 164.76 CC(C)NCC(COC1=CC=C(C=C1)CCOC)O Benzenoids 1 29 TW polyala
CCSBASE_988111cb37e01230dceeaf4d9c76ecf2 p-Xylenol blue [M+H]+ 411.1261 191.73 CC1=CC(=C(C=C1O)C)C2(C3=CC=CC=C3S(=O)(=O)O2)C4=C(C=C(C(=C4)C)O)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_eb1b56e4d2fadeb7b445afcfe3343ec5 p-Xylenol blue [M+K]+ 449.082 204.54 CC1=CC(=C(C=C1O)C)C2(C3=CC=CC=C3S(=O)(=O)O2)C4=C(C=C(C(=C4)C)O)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_2e05790a2ef7915c896b2f6cc60576d4 p-Xylenol blue [M+Na]+ 433.108 204.77 CC1=CC(=C(C=C1O)C)C2(C3=CC=CC=C3S(=O)(=O)O2)C4=C(C=C(C(=C4)C)O)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c3b5f4d3aa1a2eb40f431467c135ba08 Nisoldipine [M+Na]+ 411.1527 191.93 CC1=C(C(C(=C(N1)C)C(=O)OCC(C)C)C2=CC=CC=C2[N+](=O)[O-])C(=O)OC Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_0e2308fefbc152a37b588054406ee6e4 2-(3a,4,5,6,7,7a-Hexahydro-1H-4,7-methanoinden-8-yloxy)ethyl prop-2-enoate [M+Na]+ 271.1305 163.53 C=CC(=O)OCCOC1CC2CC1C3C2C=CC3 Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_e716b9c20d2390746ff10a99aeb940ee Sarafloxacin [M+H]+ 386.1311 184.41 C1CN(CCN1)C2=C(C=C3C(=C2)N(C=C(C3=O)C(=O)O)C4=CC=C(C=C4)F)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_143be228299a549d5879a445f5a3ab27 Sarafloxacin [M+H]+ 386.1311 196.65 C1CN(CCN1)C2=C(C=C3C(=C2)N(C=C(C3=O)C(=O)O)C4=CC=C(C=C4)F)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_b48e4d3977808f5cbe10441bbee113c5 Sarafloxacin [M+H-H2O]+ 368.1206 181.11 C1CN(CCN1)C2=C(C=C3C(=C2)N(C=C(C3=O)C(=O)O)C4=CC=C(C=C4)F)F Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2264 2265 2266 2267 2268 2269 2270 ... 2315 2316