Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_de335ad2647ea8680a644f866190d251 Kadethrin [M+H-H2O]+ 379.1363 187.44 CC1(C(C1C(=O)OCC2=COC(=C2)CC3=CC=CC=C3)C=C4CCSC4=O)C Benzenoids 1 29 TW polyala
CCSBASE_24c88c8b76674591b99ab36660cf42cb Kadethrin [M+K]+ 435.1027 192.99 CC1(C(C1C(=O)OCC2=COC(=C2)CC3=CC=CC=C3)C=C4CCSC4=O)C Benzenoids 1 29 TW polyala
CCSBASE_1593c4d028ff4ac3c060b4a0bb191148 Kadethrin [M+Na]+ 419.1287 190.18 CC1(C(C1C(=O)OCC2=COC(=C2)CC3=CC=CC=C3)C=C4CCSC4=O)C Benzenoids 1 29 TW polyala
CCSBASE_8b393ae0b64e56c41fe84f535b473594 Benalaxyl [M+H]+ 326.1751 172.68 CC1=C(C(=CC=C1)C)N(C(C)C(=O)OC)C(=O)CC2=CC=CC=C2 Organic acids and derivatives 1 29 TW polyala
CCSBASE_a55b4a21d8003b54220d9ea3e3908b02 PD-0333941 [M+H]+ 391.1652 188.99 CC1=C(N=C(O1)C2=CC=CC=C2)CCOC3=CC=CC4=C3C=CN4CCC(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_957a2bad2c59a3a77d876ecff1455785 N,N-Dibutyl-N-methylbutan-1-aminium chloride [M]+ 200.2373 156.54 CCCC[N+](C)(CCCC)CCCC Organic nitrogen compounds 1 29 TW polyala
CCSBASE_778fa547d9461d30f1761b89175f80c5 Dimethyl 2,6-naphthalenedicarboxylate [M+H]+ 245.0808 153.83 COC(=O)C1=CC2=C(C=C1)C=C(C=C2)C(=O)OC Benzenoids 1 29 TW polyala
CCSBASE_199eb09e984f2d2052ca3b43a9c7ee21 Nefiracetam [M+H]+ 247.1441 156.11 CC1=C(C(=CC=C1)C)NC(=O)CN2CCCC2=O Organic acids and derivatives 1 29 TW polyala
CCSBASE_1c882d1cf40c7b78ef0a3dcd0f151490 Nefiracetam [M+K]+ 285.1 165.59 CC1=C(C(=CC=C1)C)NC(=O)CN2CCCC2=O Organic acids and derivatives 1 29 TW polyala
CCSBASE_efaba7915177d71170ef3a2175c181d0 Nefiracetam [M+Na]+ 269.126 163.71 CC1=C(C(=CC=C1)C)NC(=O)CN2CCCC2=O Organic acids and derivatives 1 29 TW polyala
1 2 ... 2262 2263 2264 2265 2266 2267 2268 ... 2315 2316