Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_847d18dd7df179f4d0cfd5fae1170eba 4-Methoxy-2-methyl-N-phenylaniline [M+H]+ 214.1226 150.2 CC1=C(C=CC(=C1)OC)NC2=CC=CC=C2 Benzenoids 1 29 TW polyala
CCSBASE_6129c216cdcfeb4ed01869bdce025a46 Imazamethabenz [M+H]+ 289.1547 168.37 CC1=CC(=C(C=C1)C(=O)OC)C2=NC(C(=O)N2)(C)C(C)C Benzenoids 1 29 TW polyala
CCSBASE_cd0245be22fcdf80cfa60964db7d9989 Imazamethabenz [M+Na]+ 311.1366 175.8 CC1=CC(=C(C=C1)C(=O)OC)C2=NC(C(=O)N2)(C)C(C)C Benzenoids 1 29 TW polyala
CCSBASE_cbd5ab1dbd1e32b22b2a827c3f91a5fa SAR102608 [M+H]+ 362.1412 182.39 CC1=CN(C2=C1C=C(C=C2)F)NC(=O)C3=CN=C(N=C3C)C4=CC=CC=N4 Benzenoids 1 29 TW polyala
CCSBASE_c94afd1bffd04d77caf2734d9d917537 Naproxen [M+H]+ 231.1016 151.05 CC(C1=CC2=C(C=C1)C=C(C=C2)OC)C(=O)O Benzenoids 1 29 TW polyala
CCSBASE_1d5058ace6d4f7b7a83f6f994a753bc6 Diethyl (N,N-bis(2-hydroxyethyl)amino)methanephosphonate [M+H-H2O]+ 238.1203 150.3 CCOP(=O)(CN(CCO)CCO)OCC Organic acids and derivatives 1 29 TW polyala
CCSBASE_ea90a6c3949990ca295e3d89dd9d7ec8 Diethyl (N,N-bis(2-hydroxyethyl)amino)methanephosphonate [M+Na]+ 278.1128 155.42 CCOP(=O)(CN(CCO)CCO)OCC Organic acids and derivatives 1 29 TW polyala
CCSBASE_3e0034afca07ffbf28fe59d84b2d9f11 Vernolate [M+H]+ 204.1417 147.66 CCCN(CCC)C(=O)SCCC Organosulfur compounds 1 29 TW polyala
CCSBASE_69d5dbfce801dc33aca6b30e0e44f7e2 2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane [M+Na]+ 313.2349 180.99 CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C Organic oxygen compounds 1 29 TW polyala
CCSBASE_c6b26ebb84ea338da2eb1acd760c676a 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol [M+H]+ 210.1237 145.16 CN(CCCC(C1=CN=CC=C1)O)N=O Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2252 2253 2254 2255 2256 2257 2258 ... 2315 2316