Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_6cde2d89d27c1900551ef92f4fd6638d Temephos [M+H]+ 466.997 187.37 COP(=S)(OC)OC1=CC=C(C=C1)SC2=CC=C(C=C2)OP(=S)(OC)OC Organic acids and derivatives 1 29 TW polyala
CCSBASE_12cc7bea4a491a9c582aad3b30628ed8 Temephos [M+H]+ 466.997 201.94 COP(=S)(OC)OC1=CC=C(C=C1)SC2=CC=C(C=C2)OP(=S)(OC)OC Organic acids and derivatives 1 29 TW polyala
CCSBASE_fb5306ec3b658d97488a2c576909f650 Temephos [M+Na]+ 488.9789 193.4 COP(=S)(OC)OC1=CC=C(C=C1)SC2=CC=C(C=C2)OP(=S)(OC)OC Organic acids and derivatives 1 29 TW polyala
CCSBASE_b0e294d21127de7c00c799dd2afc0956 C.I. Basic Red 9 monohydrochloride [M+H]+ 288.1495 171.82 C1=CC(=N)C=CC1=C(C2=CC=C(C=C2)N)C3=CC=C(C=C3)N Benzenoids 1 29 TW polyala
CCSBASE_581628fa9ce927c081179ab702c8c3fb 4-Chlorobenzophenone [M+H]+ 217.0415 143.43 C1=CC=C(C=C1)C(=O)C2=CC=C(C=C2)Cl Benzenoids 1 29 TW polyala
CCSBASE_8681f16c13aeaf0fdd80c270970d015b 1-Amino-2-methylanthraquinone [M+H]+ 238.0863 148.64 CC1=C(C2=C(C=C1)C(=O)C3=CC=CC=C3C2=O)N Benzenoids 1 29 TW polyala
CCSBASE_a9f53e9bd89306397db1e56193b5a42a 1-Amino-2-methylanthraquinone [M+H-H2O]+ 220.0758 143.31 CC1=C(C2=C(C=C1)C(=O)C3=CC=CC=C3C2=O)N Benzenoids 1 29 TW polyala
CCSBASE_51a975bf442f749215627d1ee57aabde Trimellitic anhydride [M+H]+ 193.0131 133.5 C1=CC2=C(C=C1C(=O)O)C(=O)OC2=O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c69c8ddeb6a0aaa73f044ffd2029f19f GSK232420A [M+H]+ 326.0723 164.14 C1=CC(=C(C=C1N(CC(=O)N)CC(F)(F)F)C(F)(F)F)C#N Organic acids and derivatives 1 29 TW polyala
CCSBASE_a5c2aaade63346a13f61ecf429ce1d03 GSK232420A [M+Na]+ 348.0542 184.05 C1=CC(=C(C=C1N(CC(=O)N)CC(F)(F)F)C(F)(F)F)C#N Organic acids and derivatives 1 29 TW polyala
1 2 ... 2250 2251 2252 2253 2254 2255 2256 ... 2315 2316