Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_79f1f65dc323a9c1780389c2a0890f35 Menadione [M+H]+ 173.0597 130.91 CC1=CC(=O)C2=CC=CC=C2C1=O Benzenoids 1 29 TW polyala
CCSBASE_0413ebaef82ec094c06ef497c8713e1d 2-[4-(Diethylamino)-2-hydroxybenzoyl]benzoic acid [M+H]+ 314.1387 175.06 CCN(CC)C1=CC(=C(C=C1)C(=O)C2=CC=CC=C2C(=O)O)O Benzenoids 1 29 TW polyala
CCSBASE_96a2b63f818eff3313374609616d2fa7 2-[4-(Diethylamino)-2-hydroxybenzoyl]benzoic acid [M+H-H2O]+ 296.1282 167.38 CCN(CC)C1=CC(=C(C=C1)C(=O)C2=CC=CC=C2C(=O)O)O Benzenoids 1 29 TW polyala
CCSBASE_221354e47c2089be9ff6e090fdfa02e8 2-[4-(Diethylamino)-2-hydroxybenzoyl]benzoic acid [M+K]+ 352.0946 191.27 CCN(CC)C1=CC(=C(C=C1)C(=O)C2=CC=CC=C2C(=O)O)O Benzenoids 1 29 TW polyala
CCSBASE_11cd73a30dd232cf5f3ef74cb013759d 2-[4-(Diethylamino)-2-hydroxybenzoyl]benzoic acid [M+Na]+ 336.1206 184.42 CCN(CC)C1=CC(=C(C=C1)C(=O)C2=CC=CC=C2C(=O)O)O Benzenoids 1 29 TW polyala
CCSBASE_396a631ffdd98282a2bfeef82b8726b7 Nonanedioic acid [M+Na]+ 211.0941 145.92 C(CCCC(=O)O)CCCC(=O)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_97e51ec9e9b2e6d597656dacc6da7769 Bis[2-(2-butoxyethoxy)ethyl] adipate [M+H]+ 435.2952 203.87 CCCCOCCOCCOC(=O)CCCCC(=O)OCCOCCOCCCC Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_4a98ca56e5575c6ca91bdae7c4319dec Bis[2-(2-butoxyethoxy)ethyl] adipate [M+K]+ 473.2511 201.5 CCCCOCCOCCOC(=O)CCCCC(=O)OCCOCCOCCCC Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_f44caf4e0c190f434f82d61dec5abd05 Bis[2-(2-butoxyethoxy)ethyl] adipate [M+Na]+ 457.2772 196.89 CCCCOCCOCCOC(=O)CCCCC(=O)OCCOCCOCCCC Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_6aac776d9e6a3844a881f6002c25c098 Apomorphine hydrochloride hydrate [M+H]+ 268.1332 161.97 CN1CCC2=C3C1CC4=C(C3=CC=C2)C(=C(C=C4)O)O Alkaloids and derivatives 1 29 TW polyala
1 2 ... 2254 2255 2256 2257 2258 2259 2260 ... 2315 2316