Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_26efb8f02164132fdc28ed01ffcdff9d Ifosfamide [M+H]+ 261.0321 148.42 C1CN(P(=O)(OC1)NCCCl)CCCl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_7c602590ff75a2532414c336f96d27f8 Ifosfamide [M+Na]+ 283.014 157.47 C1CN(P(=O)(OC1)NCCCl)CCCl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_e8600ca06282b32c2fb1b990ab9380f9 N,N-Dimethyloctanamide [M+H]+ 172.1696 147.11 CCCCCCCC(=O)N(C)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_7884f9dcad7fa82db5adec1387dd67b2 2,2',2''-[Methanetriyltris(benzene-4,1-diyloxymethanediyl)]trioxirane [M+K]+ 499.1518 198.96 C1C(O1)COC2=CC=C(C=C2)C(C3=CC=C(C=C3)OCC4CO4)C5=CC=C(C=C5)OCC6CO6 None 1 29 TW polyala
CCSBASE_b0b3ff6aadd3639aad469d47d9f850ec 2,2',2''-[Methanetriyltris(benzene-4,1-diyloxymethanediyl)]trioxirane [M+K]+ 499.1518 206.65 C1C(O1)COC2=CC=C(C=C2)C(C3=CC=C(C=C3)OCC4CO4)C5=CC=C(C=C5)OCC6CO6 None 1 29 TW polyala
CCSBASE_34217238fc1bec3962ed3e3b966b831b 2,2',2''-[Methanetriyltris(benzene-4,1-diyloxymethanediyl)]trioxirane [M+Na]+ 483.1778 203.03 C1C(O1)COC2=CC=C(C=C2)C(C3=CC=C(C=C3)OCC4CO4)C5=CC=C(C=C5)OCC6CO6 None 1 29 TW polyala
CCSBASE_86a7ce042f3c9c3ee1ad3911274728c7 2,2',2''-[Methanetriyltris(benzene-4,1-diyloxymethanediyl)]trioxirane [M+Na]+ 483.1778 214.33 C1C(O1)COC2=CC=C(C=C2)C(C3=CC=C(C=C3)OCC4CO4)C5=CC=C(C=C5)OCC6CO6 None 1 29 TW polyala
CCSBASE_36a10da0ae1a77771671c5ae8bbd9d41 3-(3-Pyridyl)-1-propanol [M+H]+ 138.0913 129.62 C1=CC(=CN=C1)CCCO Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c270b44ad04ea639963206692d65d62a 4-tert-Butylaniline [M+H]+ 150.1277 145.4 CC(C)(C)C1=CC=C(C=C1)N Benzenoids 1 29 TW polyala
CCSBASE_1abcebefe6a9e1cfc4cf35fbf2e88f17 2,3-Dihydro-2,2-dimethyl-7-benzofuranol [M+H]+ 165.091 129.71 CC1(CC2=C(O1)C(=CC=C2)O)C Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2251 2252 2253 2254 2255 2256 2257 ... 2315 2316