Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_a8cff332aff0435d995cf2153dbc79e3 Ilepatril [M-H]- 431.1646 213.01 CC(C)C(C(=O)NC1CC2=CC=CC=C2C3CCCC(N3C1=O)C(=O)O)SC(=O)C Organic acids and derivatives -1 29 TW polyala
CCSBASE_f1309f64bc8b737ba7791def6a06ac5c Enadoline [M+Na]+ 419.2305 197.74 CN(C1CCC2(CCCO2)CC1N3CCCC3)C(=O)CC4=C5C=COC5=CC=C4 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_4920cce326d521559471abeab77155c4 6-Thioguanine [M+H]+ 168.0339 128.65 C1=NC2=C(N1)C(=S)N=C(N2)N Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_73b36fc30d61e999cbb235a0dfcc0dbe Flumetralin [M+H]+ 422.0525 177.65 CCN(CC1=C(C=CC=C1Cl)F)C2=C(C=C(C=C2[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] Benzenoids 1 29 TW polyala
CCSBASE_4d11f082fa91b992fcd50419d9cbcba5 Flumetralin [M+H-H2O]+ 404.042 177.92 CCN(CC1=C(C=CC=C1Cl)F)C2=C(C=C(C=C2[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] Benzenoids 1 29 TW polyala
CCSBASE_0340020674e2d2a7c0a987dfc148ed04 Flumetralin [M+Na]+ 444.0344 186.98 CCN(CC1=C(C=CC=C1Cl)F)C2=C(C=C(C=C2[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] Benzenoids 1 29 TW polyala
CCSBASE_b5bf4338d66766cc3223a8034c426736 Flumetralin [M-H]- 420.0379 181.82 CCN(CC1=C(C=CC=C1Cl)F)C2=C(C=C(C=C2[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_3c5e5e8a7eddc1f0325dbce1ba011596 Flumetralin [M-H-H2O]- 402.0268 182.43 CCN(CC1=C(C=CC=C1Cl)F)C2=C(C=C(C=C2[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_b2048736ff62b2a81228d7536598e088 Monobenzyl phthalate [M+Na]+ 279.0628 156.56 C1=CC=C(C=C1)COC(=O)C2=CC=CC=C2C(=O)O Benzenoids 1 29 TW polyala
CCSBASE_4e33ab9abc6310def81c19308a894a32 Monobenzyl phthalate [M-H]- 255.0663 161.87 C1=CC=C(C=C1)COC(=O)C2=CC=CC=C2C(=O)O Benzenoids -1 29 TW polyala
1 2 ... 2024 2025 2026 2027 2028 2029 2030 ... 2315 2316