Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_b29b8019dfc601b86c1ffccb6214b754 Triacetin [M+Na]+ 241.0682 147.94 CC(=O)OCC(COC(=O)C)OC(=O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_9b209a15f621673cf7280b3b1bfcb4bc Potassium perfluorooctanesulfonate [M-H]- 498.9302 167.92 C(C(C(C(C(F)(F)S(=O)(=O)[O-])(F)F)(F)F)(F)F)(C(C(C(F)(F)F)(F)F)(F)F)(F)F Organohalogen compounds -1 29 TW polyala
CCSBASE_81f6b4140ac11663fb601924842ff018 2,6-Diethylaniline [M+H]+ 150.1277 137.34 CCC1=C(C(=CC=C1)CC)N Benzenoids 1 29 TW polyala
CCSBASE_40682a5be645554fec3863cacd6da5b3 Methyl 2-aminobenzoate [M-H]- 150.056 133.95 COC(=O)C1=CC=CC=C1N Benzenoids -1 29 TW polyala
CCSBASE_5f8919a3ec466e7c714b75ebbe12b591 SSR150106 [M+H]+ 383.173 188.35 C1CN(CC=C1C2=CC(=CC=C2)C(F)(F)F)CCC3=CC4=C(C=C3)C=CN=C4 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_370dcd341f9e6a3753aeb75cfcaf2933 CI-959 [M+H]+ 334.0969 172.72 CC(C)OC1=C(SC2=C1C=C(C=C2)OC)C(=O)NC3=NN=N[N-]3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_7b1cfd0d7bf48b441e5a048b0fbe921b CI-959 [M+Na]+ 356.0788 185.9 CC(C)OC1=C(SC2=C1C=C(C=C2)OC)C(=O)NC3=NN=N[N-]3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_81a80e63465ab009159a9c201e19e9aa CI-959 [M-H]- 332.0823 178.4 CC(C)OC1=C(SC2=C1C=C(C=C2)OC)C(=O)NC3=NN=N[N-]3 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_1dbb4e6e65e54a88d98421bb1497a3ae Surinabant [M+H]+ 521.0505 221.64 CCC1=C(N(N=C1C(=O)NN2CCCCC2)C3=C(C=C(C=C3)Cl)Cl)C4=CC=C(C=C4)Br Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_9457b7bce6381b85b599ab9b2d394f7d Surinabant [M+Na]+ 543.0324 231.39 CCC1=C(N(N=C1C(=O)NN2CCCCC2)C3=C(C=C(C=C3)Cl)Cl)C4=CC=C(C=C4)Br Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2026 2027 2028 2029 2030 2031 2032 ... 2315 2316