Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_5c12003de0fca25f4c5c1581fd5a5705 7-(Dimethylamino)-4-methylcoumarin [M+Na]+ 226.0838 162.48 CC1=CC(=O)OC2=C1C=CC(=C2)N(C)C Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_83d495a40ca592f27fb90d9be220492a Darbufelone mesylate [M+H]+ 333.1631 187.77 CC(C)(C)C1=CC(=CC(=C1O)C(C)(C)C)C=C2C(=O)N=C(S2)N Benzenoids 1 29 TW polyala
CCSBASE_fdcb1afec68f6d0589a0b5d73083c6bb Darbufelone mesylate [M+Na]+ 355.145 204.65 CC(C)(C)C1=CC(=CC(=C1O)C(C)(C)C)C=C2C(=O)N=C(S2)N Benzenoids 1 29 TW polyala
CCSBASE_3838035f23bcb5d47a681ae670ed13d7 MEHP [M+Na]+ 301.141 179.67 CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)O Benzenoids 1 29 TW polyala
CCSBASE_bd5472b4b23eb6878e2f5f851183a71a MEHP [M-H]- 277.1445 170.77 CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)O Benzenoids -1 29 TW polyala
CCSBASE_80c7ee6cf6aa6907e5a37673ee3a618f Methyleugenol [M+FA-H]- 223.0976 152.44 COC1=C(C=C(C=C1)CC=C)OC Benzenoids -1 29 TW polyala
CCSBASE_ac154ac8fb7313c6539df54df0ee9f94 Terbutylazine [M+H]+ 230.1167 154.5 CCNC1=NC(=NC(=N1)Cl)NC(C)(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_554987f2e98235c839f2257efc53c903 4-Ethyloct-1-yn-3-ol [M+FA-H]- 199.134 153.12 CCCCC(CC)C(C#C)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_4f56fe7f92127b8cd2d1cc398673e72d SB413217A [M+FA-H]- 547.2726 244.31 CC1=NC(=NO1)C2=CC3=C(CCN(CC3)CCC4CCC(CC4)NC(=O)C=CC5=CC=C(C=C5)F)C=C2 Phenylpropanoids and polyketides -1 29 TW polyala
CCSBASE_7e514398fd3a352beafcc972e2de1a5a SB413217A [M+FA-H]- 547.2726 220.21 CC1=NC(=NO1)C2=CC3=C(CCN(CC3)CCC4CCC(CC4)NC(=O)C=CC5=CC=C(C=C5)F)C=C2 Phenylpropanoids and polyketides -1 29 TW polyala
1 2 ... 2022 2023 2024 2025 2026 2027 2028 ... 2315 2316