Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_bdac9dcccd418e7309f6392df2cbbb51 SB413217A [M+H]+ 503.2817 224.78 CC1=NC(=NO1)C2=CC3=C(CCN(CC3)CCC4CCC(CC4)NC(=O)C=CC5=CC=C(C=C5)F)C=C2 Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_00dca2ade6c7fcc2e781b4a82fdd526c Fenofibrate [M+H]+ 361.1201 189.92 CC(C)OC(=O)C(C)(C)OC1=CC=C(C=C1)C(=O)C2=CC=C(C=C2)Cl Benzenoids 1 29 TW polyala
CCSBASE_b8d6f1999551ad3936cfe25259767ef3 Fenofibrate [M+Na]+ 383.102 193.35 CC(C)OC(=O)C(C)(C)OC1=CC=C(C=C1)C(=O)C2=CC=C(C=C2)Cl Benzenoids 1 29 TW polyala
CCSBASE_b299a59dbbc6028c9f5f0ae68635a48b PharmaGSID_48505 [M+H]+ 354.0753 177.57 CC1=C2C(=NN1)NC3=C(C=C(C=C3)[N+](=O)[O-])C(=N2)C4=CC=CC=C4Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_5448a6fdf701441c2c7c1b27cb566441 PharmaGSID_48505 [M-H]- 352.0607 180.02 CC1=C2C(=NN1)NC3=C(C=C(C=C3)[N+](=O)[O-])C(=N2)C4=CC=CC=C4Cl Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_b4682532e6558c37ffce6cd60009a1bb Ilepatril [M+H]+ 433.1792 192.95 CC(C)C(C(=O)NC1CC2=CC=CC=C2C3CCCC(N3C1=O)C(=O)O)SC(=O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_e42cbb8157d1b07d467c0b5729b25723 Ilepatril [M+H-H2O]+ 415.1687 190.43 CC(C)C(C(=O)NC1CC2=CC=CC=C2C3CCCC(N3C1=O)C(=O)O)SC(=O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_0c68fe246f55b83d99fbecfeeaeaea6e Ilepatril [M+K]+ 471.1351 202.88 CC(C)C(C(=O)NC1CC2=CC=CC=C2C3CCCC(N3C1=O)C(=O)O)SC(=O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_f3cc40c5cc84763ea5a693a0e8d94c75 Ilepatril [M+Na]+ 455.1611 196.61 CC(C)C(C(=O)NC1CC2=CC=CC=C2C3CCCC(N3C1=O)C(=O)O)SC(=O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_6a54272303507e4b81907efc715b9136 Ilepatril [M-H]- 431.1646 195.11 CC(C)C(C(=O)NC1CC2=CC=CC=C2C3CCCC(N3C1=O)C(=O)O)SC(=O)C Organic acids and derivatives -1 29 TW polyala
1 2 ... 2023 2024 2025 2026 2027 2028 2029 ... 2315 2316