Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_46d4992fdec5acb22c2897a234cfa25c Imazapyr [M+H]+ 262.1186 156.92 CC(C)C1(C(=O)NC(=N1)C2=C(C=CC=N2)C(=O)O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_b37d88c19af05c9015678a2dc2ce5d7c Imazapyr [M+H-H2O]+ 244.1081 151.96 CC(C)C1(C(=O)NC(=N1)C2=C(C=CC=N2)C(=O)O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_35d0583227587094a70ab2f60ed9f3d7 Imazapyr [M+K]+ 300.0745 174.88 CC(C)C1(C(=O)NC(=N1)C2=C(C=CC=N2)C(=O)O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_2e73017f58e8385d09f9cf63016fc87c Imazapyr [M+Na]+ 284.1005 170.86 CC(C)C1(C(=O)NC(=N1)C2=C(C=CC=N2)C(=O)O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_37580a538d7b58264ed69744a8225f36 Cyromazine [M+FA-H]- 211.0949 153.43 C1CC1NC2=NC(=NC(=N2)N)N Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_edd22c947b4860cd72a7daf0419f1e7f Cyromazine [M+H]+ 167.104 134.75 C1CC1NC2=NC(=NC(=N2)N)N Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_5e1a1d830fc2e20277ee6f36b8df9f24 Nitrofurantoin [M+H]+ 239.0411 151.88 C1C(=O)NC(=O)N1N=CC2=CC=C(O2)[N+](=O)[O-] Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_f39380f042ccb7ecdf29e18c29b5ec01 Nitrofurantoin [M+Na]+ 261.023 156.71 C1C(=O)NC(=O)N1N=CC2=CC=C(O2)[N+](=O)[O-] Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_aad153dbda7700b7abeda64ebdc2f662 Nitrofurantoin [M-H]- 237.0265 153.06 C1C(=O)NC(=O)N1N=CC2=CC=C(O2)[N+](=O)[O-] Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_c732eb2f0e68a89dd6af05b65784fba7 Sucrose octaacetate [M+K]+ 717.1639 234.97 CC(=O)OCC1C(C(C(C(O1)OC2(C(C(C(O2)COC(=O)C)OC(=O)C)OC(=O)C)COC(=O)C)OC(=O)C)OC(=O)C)OC(=O)C Organic oxygen compounds 1 29 TW polyala
1 2 ... 2015 2016 2017 2018 2019 2020 2021 ... 2315 2316