Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_3c11ed2b4fafbe517c67a45571a906ea Triclocarban [M+H]+ 314.9853 170.53 C1=CC(=CC=C1NC(=O)NC2=CC(=C(C=C2)Cl)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_e5e4695e58cc331c458d8e6706054a21 Triclocarban [M+Na]+ 336.9672 147.04 C1=CC(=CC=C1NC(=O)NC2=CC(=C(C=C2)Cl)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_0c780cde5f80889b2c0d7eac5fe2519c Triclocarban [M+Na]+ 336.9672 182.76 C1=CC(=CC=C1NC(=O)NC2=CC(=C(C=C2)Cl)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_17ee6bad60391d553ca5ff126c225c54 Triclocarban [M-H]- 312.9707 169.34 C1=CC(=CC=C1NC(=O)NC2=CC(=C(C=C2)Cl)Cl)Cl Benzenoids -1 29 TW polyala
CCSBASE_0a131f0c58b7fd32e1765bbf2bcf0fef Diclofenac sodium [M+H]+ 296.024 157.84 C1=CC=C(C(=C1)CC(=O)[O-])NC2=C(C=CC=C2Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_05f8ea252cda6e38fd8c01fa89d48e47 Diclofenac sodium [M+H-H2O]+ 278.0135 153.72 C1=CC=C(C(=C1)CC(=O)[O-])NC2=C(C=CC=C2Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_4a26b5a1875fc7a4ee429c248ffa36e8 Diclofenac sodium [M+Na]+ 318.0059 164.05 C1=CC=C(C(=C1)CC(=O)[O-])NC2=C(C=CC=C2Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_29d88f828956b6dde321f2c764d44ffb AVE3295 [M+H]+ 464.1439 196.09 CCC(C1=CC=CC=C1)NC(=O)C2=C(C=CC(=C2)F)[N-]S(=O)(=O)C3=CC=CC4=C3N=CC=C4 None 1 29 TW polyala
CCSBASE_98ae3192eee6905edacc80cafa2b4cfe AVE3295 [M+K]+ 502.0998 206.21 CCC(C1=CC=CC=C1)NC(=O)C2=C(C=CC(=C2)F)[N-]S(=O)(=O)C3=CC=CC4=C3N=CC=C4 None 1 29 TW polyala
CCSBASE_420f4c076dda795daa3f4223bbc1deb1 AVE3295 [M+Na]+ 486.1258 204.56 CCC(C1=CC=CC=C1)NC(=O)C2=C(C=CC(=C2)F)[N-]S(=O)(=O)C3=CC=CC4=C3N=CC=C4 None 1 29 TW polyala
1 2 ... 2017 2018 2019 2020 2021 2022 2023 ... 2315 2316