Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_4a9d157acdb6be6bc22e3f46efdc9903 AVE3295 [M-H]- 462.1293 202.25 CCC(C1=CC=CC=C1)NC(=O)C2=C(C=CC(=C2)F)[N-]S(=O)(=O)C3=CC=CC4=C3N=CC=C4 None -1 29 TW polyala
CCSBASE_84ec813eb9011302acff8c9954e42d5f MK-274 [M+H]+ 431.0937 187.27 C1=CC(=CC(=C1)C2=NNC(=N2)C(=O)N)C3=C(C=CC(=C3)F)OCC(C(F)(F)F)(F)F Benzenoids 1 29 TW polyala
CCSBASE_aa57dc9884929eed74e6b088562940fe MK-274 [M+H-H2O]+ 413.0832 194.59 C1=CC(=CC(=C1)C2=NNC(=N2)C(=O)N)C3=C(C=CC(=C3)F)OCC(C(F)(F)F)(F)F Benzenoids 1 29 TW polyala
CCSBASE_e60fc580fe271fafaa1085c27892d32d MK-274 [M+K]+ 469.0496 193.08 C1=CC(=CC(=C1)C2=NNC(=N2)C(=O)N)C3=C(C=CC(=C3)F)OCC(C(F)(F)F)(F)F Benzenoids 1 29 TW polyala
CCSBASE_905f9e7d31d75c11d9b7de812da1e252 MK-274 [M+Na]+ 453.0756 190.82 C1=CC(=CC(=C1)C2=NNC(=N2)C(=O)N)C3=C(C=CC(=C3)F)OCC(C(F)(F)F)(F)F Benzenoids 1 29 TW polyala
CCSBASE_3ecf5f6e8d3c929e46b3f3d7ec96db2f MK-274 [M-H]- 429.0791 194.53 C1=CC(=CC(=C1)C2=NNC(=N2)C(=O)N)C3=C(C=CC(=C3)F)OCC(C(F)(F)F)(F)F Benzenoids -1 29 TW polyala
CCSBASE_ed0a091d1feb338e5365fb11fa548d51 Linuron [M+H]+ 249.0192 151.16 CN(C(=O)NC1=CC(=C(C=C1)Cl)Cl)OC Benzenoids 1 29 TW polyala
CCSBASE_1d66797e7b6d26f47dacdbea100bd5c8 2-Methyl-4'-(methylthio)-2-morpholinopropiophenone [M+H]+ 280.1366 165.47 CC(C)(C(=O)C1=CC=C(C=C1)SC)N2CCOCC2 Organic oxygen compounds 1 29 TW polyala
CCSBASE_00b2d29da01158f4a67ef24bc87c5ce4 1,2-Benzisothiazolin-3-one [M+H]+ 152.0165 124.4 C1=CC=C2C(=C1)C(=O)NS2 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_24acf0ce87adbf3f40152ae8cb726d84 1,2-Benzisothiazolin-3-one [M+H-H2O]+ 134.006 125.9 C1=CC=C2C(=C1)C(=O)NS2 Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2018 2019 2020 2021 2022 2023 2024 ... 2315 2316