Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_afcd1f79d94c53ed07b7952d891ae32c Phosphoric acid, dibutyl ester [M+K]+ 249.0653 175.56 CCCCOP(=O)(O)OCCCC Organic acids and derivatives 1 29 TW polyala
CCSBASE_e5ac121d27b7af1f86848499b8bc756b Phosphoric acid, dibutyl ester [M+Na]+ 233.0913 165.98 CCCCOP(=O)(O)OCCCC Organic acids and derivatives 1 29 TW polyala
CCSBASE_0d156ad541320498e7d0628e2cce9a7c 2,4-Dichlorophenol [M-H]- 160.9566 129.98 C1=CC(=C(C=C1Cl)Cl)O Benzenoids -1 29 TW polyala
CCSBASE_a04ffe30acdf074863cdc754fe225b3a Levonorgestrel [M+H]+ 313.2162 178.69 CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_95b4d5de257f8e725b28438240bb6de1 Levonorgestrel [M+H-H2O]+ 295.2057 173.08 CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_8aaa2b1f5df43c7898f1eecbd3cae912 Levonorgestrel [M+Na]+ 335.1981 202.84 CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_604a0eaabd6f40f4bd69763611a06ef6 Levonorgestrel [M+Na]+ 335.1981 175.5 CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_c1eee96b30ccc101f59976f50814bee1 1,7-Dioxaspiro[5.5]undecane [M-H]- 155.1077 147.07 C1CCOC2(C1)CCCCO2 Organic oxygen compounds -1 29 TW polyala
CCSBASE_712122a6c6d9c4f30795d708083a9438 Ro 23-7637 [M+H]+ 481.3214 236.33 C1CN(CCC1C=C(C2=CC=CC=C2)C3=CC=CC=C3)C(=O)CCCCCCCCC4=CN=CC=C4 Benzenoids 1 29 TW polyala
CCSBASE_b64578e75ffe31f5fdba04739e026f41 Ro 23-7637 [M+Na]+ 503.3033 248.91 C1CN(CCC1C=C(C2=CC=CC=C2)C3=CC=CC=C3)C(=O)CCCCCCCCC4=CN=CC=C4 Benzenoids 1 29 TW polyala
1 2 ... 2013 2014 2015 2016 2017 2018 2019 ... 2315 2316