Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_5de6ee887f99092da15c9c4a38158067 5HPP-33 [M+H-H2O]+ 306.1489 172.57 CC(C)C1=C(C(=CC=C1)C(C)C)N2C(=O)C3=C(C2=O)C=C(C=C3)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_7e0765c47b49147c8e0139cb97c0568f 5HPP-33 [M+Na]+ 346.1413 183.85 CC(C)C1=C(C(=CC=C1)C(C)C)N2C(=O)C3=C(C2=O)C=C(C=C3)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_8041295007652777bd4531e30a7d0138 5HPP-33 [M-H]- 322.1448 183.47 CC(C)C1=C(C(=CC=C1)C(C)C)N2C(=O)C3=C(C2=O)C=C(C=C3)O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_ed9f7c93e6fc3e516e3147c03b3097ce Triethylene glycol [M+Na]+ 173.0784 130.44 C(COCCOCCO)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_9f3277a4ca4a7e528358018b032406fe CP-457920 [M+H]+ 324.1343 181.08 CCOC1=NC2=C(C=C1)NC=C(C2=O)C(=O)NCC3=CC=CC=C3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_aec480a33ef820ce8e034d6ed0609358 CP-457920 [M+H-H2O]+ 306.1238 172.57 CCOC1=NC2=C(C=C1)NC=C(C2=O)C(=O)NCC3=CC=CC=C3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_02662a735ef6ade52451484cf1b204ea CP-457920 [M+Na]+ 346.1162 186.64 CCOC1=NC2=C(C=C1)NC=C(C2=O)C(=O)NCC3=CC=CC=C3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_b428be172c7ceae75713bd9f05cba237 CP-457920 [M-H]- 322.1197 182.84 CCOC1=NC2=C(C=C1)NC=C(C2=O)C(=O)NCC3=CC=CC=C3 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_37d089dc882d363c21351576a0f91a9b GW473178E methyl benzene sulphonic acid [M+H]+ 356.2333 186.74 CCN(C(C)C)C(=O)C1=CC(=CC(=C1)C)OCC(C)NC2=CC=NC=C2 None 1 29 TW polyala
CCSBASE_99396c6e845b4ef83d67aa6506252c56 3-Methyl-3,4-dihydro-2H-1,4-benzoxazine [M+H]+ 150.0914 130.38 CC1COC2=CC=CC=C2N1 Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2006 2007 2008 2009 2010 2011 2012 ... 2315 2316