Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_359970c2104256f19f05dec33f3c1639 Imazethapyr [M+H-H2O]+ 272.1394 162.6 CCC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)O Organic acids and derivatives 1 29 TW polyala
CCSBASE_bd560cd8b76f4ba48ccb39679a211755 Imazethapyr [M-H]- 288.1353 176.95 CCC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)O Organic acids and derivatives -1 29 TW polyala
CCSBASE_d6ba7db90a490bb3c7d056f8c61794b1 Nuarimol [M+H]+ 315.0695 168.1 C1=CC=C(C(=C1)C(C2=CC=C(C=C2)F)(C3=CN=CN=C3)O)Cl Benzenoids 1 29 TW polyala
CCSBASE_fb3b49cf0906c678ae52b296284a8670 Nuarimol [M+H-H2O]+ 297.059 162.4 C1=CC=C(C(=C1)C(C2=CC=C(C=C2)F)(C3=CN=CN=C3)O)Cl Benzenoids 1 29 TW polyala
CCSBASE_fdc2aa200ecda4b7cae84d0380b28230 Carbendazim [M+H]+ 192.0768 137.28 COC(=O)NC1=NC2=CC=CC=C2N1 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_51544bde8ae4318acf815728b6810d6e 4,4'-Sulfonyldiphenol [M+H]+ 251.0373 151.86 C1=CC(=CC=C1O)S(=O)(=O)C2=CC=C(C=C2)O Benzenoids 1 29 TW polyala
CCSBASE_21aa40372e6e2d9371f739fbfe0f4c81 4,4'-Sulfonyldiphenol [M+Na]+ 273.0192 168.16 C1=CC(=CC=C1O)S(=O)(=O)C2=CC=C(C=C2)O Benzenoids 1 29 TW polyala
CCSBASE_844f24c06aa22397727a6f8a0a5e2d2c Fenhexamid [M+H]+ 302.0709 165.25 CC1(CCCCC1)C(=O)NC2=C(C(=C(C=C2)O)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_63bd78dba57d7310f380757a9401f219 Fenhexamid [M-H]- 300.0563 172.12 CC1(CCCCC1)C(=O)NC2=C(C(=C(C=C2)O)Cl)Cl Benzenoids -1 29 TW polyala
CCSBASE_bf509eb1e939dd70b2674db774e0e392 N,N'-Methylenebisacrylamide [M+Na]+ 177.0634 135.48 C=CC(=O)NCNC(=O)C=C Organic acids and derivatives 1 29 TW polyala
1 2 ... 2010 2011 2012 2013 2014 2015 2016 ... 2315 2316