Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_34f6205691c906b5f511ca10b3fa3b76 17-Methyltestosterone [M+H]+ 303.2319 175.59 CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4(C)O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_75b1b5888ba16273cbd82551bf6efc01 17-Methyltestosterone [M+H-H2O]+ 285.2214 170.95 CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4(C)O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_10072ca963d625fe4294262c5b50864e 17-Methyltestosterone [M+Na]+ 325.2138 199.07 CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4(C)O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_5d76f0c42979ebb28699c9b0e71b8b09 17-Methyltestosterone [M+Na]+ 325.2138 175.72 CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4(C)O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_e02762afed001bb1178e00571468ec94 Prodiamine [M-H]- 349.1129 171.61 CCCN(CCC)C1=C(C=C(C(=C1[N+](=O)[O-])N)C(F)(F)F)[N+](=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_81c21946f495dd9c6e6ed3f38ed686b6 PharmaGSID_48507 [M+H]+ 377.142 190.24 CC(C)(CNC1=NC=C2C(=CC(=O)N(C2=N1)C)OC3=C(C=C(C=C3)F)F)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_48e4638f89a6f0150b6423844fa0e35e PharmaGSID_48507 [M+H-H2O]+ 359.1315 186.58 CC(C)(CNC1=NC=C2C(=CC(=O)N(C2=N1)C)OC3=C(C=C(C=C3)F)F)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_9a912ec052d7e74060d5f92200046b93 PharmaGSID_48507 [M+Na]+ 399.1239 202.09 CC(C)(CNC1=NC=C2C(=CC(=O)N(C2=N1)C)OC3=C(C=C(C=C3)F)F)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_1043a2f1ec8b16fde6e7eb0a0ce45df1 PharmaGSID_48507 [M-H]- 375.1274 193.62 CC(C)(CNC1=NC=C2C(=CC(=O)N(C2=N1)C)OC3=C(C=C(C=C3)F)F)O Organic oxygen compounds -1 29 TW polyala
CCSBASE_913ec4c4cce056e5fd441a4b85880fd6 Imazethapyr [M+H]+ 290.1499 168.25 CCC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)O Organic acids and derivatives 1 29 TW polyala
1 2 ... 2009 2010 2011 2012 2013 2014 2015 ... 2315 2316