Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_8220defb3ee7aaf46abd03f4f0141550 Alachlor [M+Na]+ 292.1075 169.71 CCC1=C(C(=CC=C1)CC)N(COC)C(=O)CCl Benzenoids 1 29 TW polyala
CCSBASE_28704b0d22de99d52bf4ebdfd764fa46 PharmaGSID_48521 [M+H]+ 556.3858 243.51 CCCCC1CN(C(=O)OC12CCN(CC2)C3(CCN(CC3)C(=O)C4=C(N=CN=C4C)C)C)CC5CCOCC5 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_e6aa8fea1c38eb67f961e88c1349dd27 Oxadiazon [M+H]+ 345.0767 181.27 CC(C)OC1=C(C=C(C(=C1)N2C(=O)OC(=N2)C(C)(C)C)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_f450b25b373a8ab03a460c1a9ef744fa Oxadiazon [M+Na]+ 367.0586 196.13 CC(C)OC1=C(C=C(C(=C1)N2C(=O)OC(=N2)C(C)(C)C)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_94e0d4742b589fcbce77bcdb0a53238d Farglitazar [M+H]+ 547.2228 216.92 CC1=C(N=C(O1)C2=CC=CC=C2)CCOC3=CC=C(C=C3)CC(C(=O)O)NC4=CC=CC=C4C(=O)C5=CC=CC=C5 Organic acids and derivatives 1 29 TW polyala
CCSBASE_64931a9b0e8293646d27e96e9ba2aae6 Farglitazar [M-H]- 545.2082 229.64 CC1=C(N=C(O1)C2=CC=CC=C2)CCOC3=CC=C(C=C3)CC(C(=O)O)NC4=CC=CC=C4C(=O)C5=CC=CC=C5 Organic acids and derivatives -1 29 TW polyala
CCSBASE_cafeed4936f37ec168cff5cf9c59d0b6 6-Hydroxy-2-naphthyl disulfide [M-H]- 349.0362 167.36 C1=CC2=C(C=CC(=C2)SSC3=CC4=C(C=C3)C=C(C=C4)O)C=C1O Benzenoids -1 29 TW polyala
CCSBASE_6fdd382baa530b69ee47f5fe66161d0c 6-Hydroxy-2-naphthyl disulfide [M-H]- 349.0362 184.53 C1=CC2=C(C=CC(=C2)SSC3=CC4=C(C=C3)C=C(C=C4)O)C=C1O Benzenoids -1 29 TW polyala
CCSBASE_216a74c04b573bc396de64902d6ba764 5,5-Diphenylhydantoin [M+H]+ 253.0972 159.3 C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3=CC=CC=C3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_19873f6327321e165e8a495ef8cf1eb0 5,5-Diphenylhydantoin [M-H]- 251.0826 161.36 C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3=CC=CC=C3 Organoheterocyclic compounds -1 29 TW polyala
1 2 ... 2004 2005 2006 2007 2008 2009 2010 ... 2315 2316