Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_a8811191d32f9f4fdc865d7c7c4f879c 3,3',4,4',5,5'-Hexachlorobiphenyl [M]+ 357.844416208 169.6 C1=C(C=C(C(=C1Cl)Cl)Cl)C2=CC(=C(C(=C2)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_46e34e496836e53923bc8658aab484ab 2,2',3,3',4,4',5-Heptachlorobiphenyl [M]+ 391.805443856 171.4 C1=CC(=C(C(=C1C2=CC(=C(C(=C2Cl)Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_638de229bbf04faace9cf3d0393610d0 2,2',3,3',4,4',6-Heptachlorobiphenyl [M]+ 391.805443856 170.0 C1=CC(=C(C(=C1C2=C(C(=C(C=C2Cl)Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_ede67f1b6e472005a65ae63e112fb588 2,2',3,3',4,5,6'-Heptachlorobiphenyl [M]+ 391.805443856 170.2 C1=CC(=C(C(=C1Cl)C2=CC(=C(C(=C2Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_4bc9904a0aadab9fcf3b960f7c52aa69 2,2',3,3',4,5',6'-Heptachlorobiphenyl [M]+ 391.805443856 170.7 C1=CC(=C(C(=C1C2=C(C(=CC(=C2Cl)Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_315a67ec1ef2a8fc420be43a96952992 2,2',3,3',5,5',6-Heptachlorobiphenyl [M]+ 391.805443856 172.0 C1=C(C=C(C(=C1C2=C(C(=CC(=C2Cl)Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_71f7de9a9767e67e6e1b420b4fdf50ba 2,2',3,4,4',5,5'-Heptachlorobiphenyl [M]+ 391.805443856 172.6 C1=C(C(=CC(=C1Cl)Cl)Cl)C2=CC(=C(C(=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_28315bec510a4a4ccd166a610d91a71d 2,2',3,4,4',5',6-Heptachlorobiphenyl [M]+ 391.805443856 171.4 C1=C(C(=CC(=C1Cl)Cl)Cl)C2=C(C(=C(C=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_3209fef28d3ba87eff20bbd5bff24867 2,2',3,4',5,5',6-Heptachlorobiphenyl [M]+ 391.805443856 171.9 C1=C(C(=CC(=C1Cl)Cl)Cl)C2=C(C(=CC(=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_52242d2920375699b5df1ae4b786d7fc 2,2',3,4',5,6,6'-Heptachlorobiphenyl [M]+ 391.805443856 168.7 C1=C(C=C(C(=C1Cl)C2=C(C(=CC(=C2Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
1 2 ... 1944 1945 1946 1947 1948 1949 1950 ... 2315 2316