Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_54fac072f4fe9aa8209bdd438a4da47c 3,3',4,4',5,5'-Hexabromobiphenyl (PBB 169) [M]+ 621.5413227280001 183.8 C1=C(C=C(C(=C1Br)Br)Br)C2=CC(=C(C(=C2)Br)Br)Br Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_6569d8e763b759494ca949cd50c64658 2,2',3,4,4',5,5'-Heptabromobiphenyl (PBB 180) [M]+ 699.4518347960001 186.6 Brc1cc(Br)c(-c2cc(Br)c(Br)c(Br)c2Br)cc1Br None 1 28 TIMS calibration with PAHs
CCSBASE_a8ed6bf94bb84a3b7fa02d73ff6ae2a3 2,2',3,3',4,4',5,5'-Octabromobiphenyl (PBB 194) [M]+ 777.3623468640002 193.0 Brc1cc(-c2cc(Br)c(Br)c(Br)c2Br)c(Br)c(Br)c1Br None 1 28 TIMS calibration with PAHs
CCSBASE_e37e455a237b18bbc1f4bc9d4b62dc7d 2,2',3,3',4,4',5,5',6-Nonabromobiphenyl (PBB 206) [M]+ 855.2728589320002 197.2 Brc1cc(-c2c(Br)c(Br)c(Br)c(Br)c2Br)c(Br)c(Br)c1Br None 1 28 TIMS calibration with PAHs
CCSBASE_e248b21d7739b60346d44984ba6819d5 Decabromobiphenyl (PBB 209) [M]+ 933.1833710000002 199.7 Brc1c(Br)c(Br)c(-c2c(Br)c(Br)c(Br)c(Br)c2Br)c(Br)c1Br None 1 28 TIMS calibration with PAHs
CCSBASE_ca16998a903dde688d688f038e2199ed 4'-Bromo-2,3',4,5-Tetrachlorobiphenyl [M]+ 367.83287298000005 164.6 C1=CC(=C(C=C1C2=CC(=C(C=C2Cl)Cl)Cl)Cl)Br Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_08e403e41ebc5853076ce2bf8d953f64 4'-Bromo-2,3,3',4-Tetrachlorobiphenyl [M]+ 367.83287298000005 163.2 C1=CC(=C(C=C1C2=C(C(=C(C=C2)Cl)Cl)Cl)Cl)Br Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_f2605aca1a72f27f79b26dfdafeb670d 4'-Bromo-3,3',4,5-Tetrachlorobiphenyl [M]+ 367.83287298000005 165.5 C1=CC(=C(C=C1C2=CC(=C(C(=C2)Cl)Cl)Cl)Cl)Br Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_2d27a91be4ed8258a5bd96439dc0c4b4 4'-Bromo-2,3,3',4,5-Pentachlorobiphenyl [M]+ 401.79390062799996 169.6 C1=CC(=C(C=C1C2=CC(=C(C(=C2Cl)Cl)Cl)Cl)Cl)Br Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_648a9e24028038b9242e0105d94483d0 3,4-Dibromo-3',4'-Dichlorobiphenyl [M]+ 377.82132975200005 161.3 C1=CC(=C(C=C1C2=CC(=C(C=C2)Br)Br)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
1 2 ... 1947 1948 1949 1950 1951 1952 1953 ... 2315 2316