Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_c620abf016d002f1d9741e0268fb1817 3,4-Dibromo-3',4',5'-Trichlorobiphenyl [M]+ 411.7823574 167.9 C1=CC(=C(C=C1C2=CC(=C(C(=C2)Cl)Cl)Cl)Br)Br None 1 28 TIMS calibration with PAHs
CCSBASE_cbb95c5394d3889d6adb959448d5ad5e 3,4-Dichloro-3',4',5'-Tribromobiphenyl [M]+ 455.73184182 169.8 C1=CC(=C(C=C1C2=CC(=C(C(=C2)Br)Br)Br)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_044bf2d4f9392ea3545432113178d33e 2,3,7,8-Tetrachlorodibenzo-p-dioxin [M]+ 319.896540088 159.3 C1=C2C(=CC(=C1Cl)Cl)OC3=CC(=C(C=C3O2)Cl)Cl Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
CCSBASE_a931de7fbfcbdb5865ecb07ec0679022 1,2,3,7,8-Pentachlorodibenzo-p-dioxin [M]+ 353.857567736 165.2 C1=C2C(=CC(=C1Cl)Cl)OC3=C(C(=C(C=C3O2)Cl)Cl)Cl Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
CCSBASE_392fe2a48650ed284667a4bed15e0df3 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin [M]+ 387.818595384 170.9 C1=C2C(=CC(=C1Cl)Cl)OC3=C(O2)C(=C(C(=C3Cl)Cl)Cl)Cl Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
CCSBASE_cda014149426743787b610cd5d717eb1 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin [M]+ 387.81859538399993 170.7 C1=C2C(=C(C(=C1Cl)Cl)Cl)OC3=CC(=C(C(=C3O2)Cl)Cl)Cl Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
CCSBASE_82c80792864e030bb6a8e84abec5c8cc 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin [M]+ 387.818595384 169.0 C1=C2C(=C(C(=C1Cl)Cl)Cl)OC3=C(C(=C(C=C3O2)Cl)Cl)Cl Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
CCSBASE_8408a297c20093f044a429a0cbbd8c63 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin [M]+ 421.779623032 174.9 C1=C2C(=C(C(=C1Cl)Cl)Cl)OC3=C(O2)C(=C(C(=C3Cl)Cl)Cl)Cl Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
CCSBASE_6c9cf4d6ac1934bf9029a811a37633ce Octachlorodibenzo-p-dioxin [M]+ 455.74065068 178.9 C12=C(C(=C(C(=C1Cl)Cl)Cl)Cl)OC3=C(O2)C(=C(C(=C3Cl)Cl)Cl)Cl Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
CCSBASE_8473d268a3cc9241cc942d9b493de424 1-Bromodibenzo-p-dioxin [M]+ 261.962941564 141.4 C1=CC=C2C(=C1)OC3=C(O2)C(=CC=C3)Br Organoheterocyclic compounds 1 28 TIMS calibration with PAHs
1 2 ... 1948 1949 1950 1951 1952 1953 1954 ... 2315 2316