Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_87611c000caf6bc307edb9552afcdd6c 2,3,4,4',5-Pentachlorobiphenyl [M]+ 323.88338856 160.2 C1=CC(=CC=C1C2=CC(=C(C(=C2Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_8061bb0fbbe14cc2986a9d061ad23c77 2,3',4,4',5-Pentachlorobiphenyl [M]+ 323.88338856 162.2 C1=CC(=C(C=C1C2=CC(=C(C=C2Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_d5da90fb652929ac2e19df486956a5ba 2,3',4,4',6-Pentachlorobiphenyl [M]+ 323.88338856 160.9 C1=CC(=C(C=C1C2=C(C=C(C=C2Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_93de1ac07dd13602054fe171ecc108e5 2,3',4,4',5'-Pentachlorobiphenyl [M]+ 323.88338856 161.6 C1=CC(=C(C=C1Cl)Cl)C2=CC(=C(C(=C2)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_66c21735521563ed859a803cbb28b6ed 3,3',4,4',5-Pentachlorobiphenyl [M]+ 323.88338856 162.9 C1=CC(=C(C=C1C2=CC(=C(C(=C2)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_86bd4fbb59a02142ecce7e4c20cd0c38 2,2',3,3',4,4'-Hexachlorobiphenyl [M]+ 357.844416208 165.3 C1=CC(=C(C(=C1C2=C(C(=C(C=C2)Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_3a72504b7b150352aa138f6e98533a18 2,2',3,3',4,5-Hexachlorobiphenyl [M]+ 357.844416208 165.3 C1=CC(=C(C(=C1)Cl)Cl)C2=CC(=C(C(=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_69b2610fe7f78cf7dde5a91469c4d3dc 2,2',3,3',5,6'-Hexachlorobiphenyl [M]+ 357.844416208 165.4 C1=CC(=C(C(=C1Cl)C2=C(C(=CC(=C2)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_a829d34c091b35ef0ed0c9d531afc331 2,2',3,4,4',5-Hexachlorobiphenyl [M]+ 357.844416208 166.1 C1=CC(=C(C=C1Cl)Cl)C2=CC(=C(C(=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_a5368418395a3ab503e3f2b9e2deb40e 2,2',3,4,4',5'-Hexachlorobiphenyl [M]+ 357.844416208 166.4 C1=CC(=C(C(=C1C2=CC(=C(C=C2Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
1 2 ... 1942 1943 1944 1945 1946 1947 1948 ... 2315 2316