Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_161b741b5541a78c79d03f5c75be1858 2,2',3,5'-Tetrachlorobiphenyl [M]+ 289.922360912 154.7 C1=CC(=C(C(=C1)Cl)Cl)C2=C(C=CC(=C2)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_4d82921e6aeaf32d94e26a7e3ef5c38d 2,2',4,5'-Tetrachlorobiphenyl [M]+ 289.922360912 155.0 C1=CC(=C(C=C1Cl)Cl)C2=C(C=CC(=C2)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_fae92f39eed7e8006340cc5154852c35 2,2',5,5'-Tetrachlorobiphenyl [M]+ 289.922360912 155.8 C1=CC(=C(C=C1Cl)C2=C(C=CC(=C2)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_0c5c97740b1b407f8c5d5519317e0cf9 2,2',6,6'-Tetrachlorobiphenyl [M]+ 289.922360912 150.6 C1=CC(=C(C(=C1)Cl)C2=C(C=CC=C2Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_c513ff58d19e35dbb00b33cc9a1c81ed 2,3,4,4'-Tetrachlorobiphenyl [M]+ 289.922360912 153.8 C1=CC(=CC=C1C2=C(C(=C(C=C2)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_f7ac5c007a4549b59cefb951a2e081ce 2,3',4,4'-Tetrachlorobiphenyl [M]+ 289.922360912 155.2 C1=CC(=C(C=C1C2=C(C=C(C=C2)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_32e986c3ae3bcfd992ed7d5f106c42c2 2,3',4',5-Tetrachlorobiphenyl [M]+ 289.922360912 156.1 C1=CC(=C(C=C1C2=C(C=CC(=C2)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_7c482ea655892bdb31311d9cd8511e3f 2,4,4',5-Tetrachlorobiphenyl [M]+ 289.922360912 155.2 C1=CC(=CC=C1C2=CC(=C(C=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_58385f60fb7b019134656abae873e09d 3,3',4,4'-Tetrachlorobiphenyl [M]+ 289.922360912 156.4 C1=CC(=C(C=C1C2=CC(=C(C=C2)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_69b9b9aa689008cf4e5ea10011e9a52d 3,4,4',5-Tetrachlorobiphenyl [M]+ 289.922360912 155.9 C1=CC(=CC=C1C2=CC(=C(C(=C2)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
1 2 ... 1940 1941 1942 1943 1944 1945 1946 ... 2315 2316