Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å2
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Vasilopoulou, C. G. et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Communications 1–11 (2020).


21
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


22
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


23
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


24
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


25
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


26
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_934EFCCF50 Protriptyline [M+H]+ 264.3913 162.8 CNCCCC1C2=CC=CC=C2C=CC3=CC=CC=C13 small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_E6821FF8B8 Psilocin [M+H]+ 205.28029999999998 144.8 OC1=CC=CC2=C1C(CCN(C)C)=CN2 small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_B57AA5B69F Psilocybine [M+H]+ 285.259062 157.3 OP(OC1=CC=CC2=C1C(CCN(C)C)=CN2)(O)=O small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_C46D6A3E23 Quazepam [M+H]+ 387.79991279999996 174.9 ClC1=CC(C(C2=CC=CC=C2F)=NCC3=S)=C(C=C1)N3CC(F)(F)F small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_561B8EFB54 Quetiapine [M+H]+ 384.5173 192.9 OCCOCCN1CCN(C2=NC3=CC=CC=C3SC4=CC=CC=C24)CC1 small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_E325CB9A91 Quinidine [M+H]+ 325.43129999999996 175.8 O[C@@H](C1=C(C=C2OC)C(C=C2)=NC=C1)[C@]3([H])[N@@]4C[C@H](C=C)[C@](CC4)([H])C3 small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_10AAC23913 Quinine [M+H]+ 325.43129999999996 177.4 C=C[C@H]1C[N@]2[C@@]([C@H](O)C3=CC=NC4=CC=C(OC)C=C43)([H])C[C@@H]1CC2 small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_492F102DB3 Ramipril [M+H]+ 417.52529999999996 197.0 CCOC([C@@H](N[C@H](C(N1[C@H]2CCC[C@H]2C[C@H]1C(O)=O)=O)C)CCC3=CC=CC=C3)=O small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_7502FF5A99 Reboxetine [M+H]+ 314.4043 174.0 CCOC1=CC=CC=C1O[C@H](C2=CC=CC=C2)[C@]3([H])OCCNC3 small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
CCSBASE_AF25D1D79C Remifentanil [M+H]+ 377.46029999999996 190.3 O=C(C1(CCN(CCC(OC)=O)CC1)N(C(CC)=O)C2=CC=CC=C2)OC small molecule 1 13 TW Major Mix IMS/Tof Calibration Kit (Waters)
1 2 ... 550 551 552 553 554 555 556 ... 1698 1699