Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å2
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Vasilopoulou, C. G. et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Communications 1–11 (2020).


21
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


22
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


23
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


24
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


25
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


26
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_29E0D5E803 Ancitabine [M+H]+ 226.0828 140.0 C1=CN2[C@H]3[C@H]([C@@H]([C@H](O3)CO)O)OC2=NC1=N small molecule 1 26 DT single field, calibrated
CCSBASE_1CD4FCB0F1 Ancitabine [M+Na]+ 248.0648 151.6 C1=CN2[C@H]3[C@H]([C@@H]([C@H](O3)CO)O)OC2=NC1=N small molecule 1 26 DT single field, calibrated
CCSBASE_BFAE7551DA Ancitabine [M+K]+ 264.0387 153.2 C1=CN2[C@H]3[C@H]([C@@H]([C@H](O3)CO)O)OC2=NC1=N small molecule 1 26 DT single field, calibrated
CCSBASE_C4EFA5839F Ancitabine [M+H-H2O]+ 208.0722 140.0 C1=CN2[C@H]3[C@H]([C@@H]([C@H](O3)CO)O)OC2=NC1=N small molecule 1 26 DT single field, calibrated
CCSBASE_7C839F2C51 Artenimol [M+H]+ 285.1702 160.2 C[C@@H]1CC[C@H]2[C@H]([C@H](O[C@H]3[C@@]24[C@H]1CC[C@](O3)(OO4)C)O)C small molecule 1 26 DT single field, calibrated
CCSBASE_EC66BAB7B3 Artenimol [M+Na]+ 307.1522 164.3 C[C@@H]1CC[C@H]2[C@H]([C@H](O[C@H]3[C@@]24[C@H]1CC[C@](O3)(OO4)C)O)C small molecule 1 26 DT single field, calibrated
CCSBASE_B0A823DD0D Artenimol [M+K]+ 323.1261 165.4 C[C@@H]1CC[C@H]2[C@H]([C@H](O[C@H]3[C@@]24[C@H]1CC[C@](O3)(OO4)C)O)C small molecule 1 26 DT single field, calibrated
CCSBASE_5BA85E58D1 Artenimol [M+H-H2O]+ 267.1596 156.9 C[C@@H]1CC[C@H]2[C@H]([C@H](O[C@H]3[C@@]24[C@H]1CC[C@](O3)(OO4)C)O)C small molecule 1 26 DT single field, calibrated
CCSBASE_9A65703DDA Betamipron [M+H]+ 194.0817 137.9 C1=CC=C(C=C1)C(=O)NCCC(=O)O small molecule 1 26 DT single field, calibrated
CCSBASE_143576E89A Betamipron [M+Na]+ 216.0637 148.3 C1=CC=C(C=C1)C(=O)NCCC(=O)O small molecule 1 26 DT single field, calibrated
1 2 ... 1685 1686 1687 1688 1689 1690 1691 ... 1698 1699