Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å2
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Vasilopoulou, C. G. et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Communications 1–11 (2020).


21
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


22
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


23
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


24
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


25
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


26
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_54A843DF53 Indole-3-pyruvic acid [M-H]- 202.0504 138.8217524 C1=CC=C2C(=C1)C(=CN2)CC(=O)C(=O)O small molecule 1 4 DT single field, calibrated with Agilent tune mix (Agilent)
CCSBASE_25F774E379 Cyanocobalamin [M-H]- 1353.5596 334.3012565 CC1=CC2=C(C=C1C)N(C=N2)[C@@H]3[C@@H]([C@@H]([C@H](O3)CO)OP(=O)([O-])O[C@H](C)CNC(=O)CC[C@@]4([C@H]([C@@H]5[C@]6([C@@]([C@@H](/C(=C(/C7=N/C(=C\C8=N/C(=C(\C4=N5)/C)/[C@H](C8(C)C)CCC(=O)N)/[C@H]([C@]7(C)CC(=O)N)CCC(=O)N)\C)/[N-]6)CCC(=O)N)(C)CC(=O)N)C)CC(=O)N)C)O.[C-]#N.[Co+3] small molecule 1 4 DT single field, calibrated with Agilent tune mix (Agilent)
CCSBASE_76A5C21E17 DG(14:0/14:0) [M+H-H2O]+ 495.442 242.3 OC[C@]([H])(OC(CCCCCCCCCCCCCCC)=O)COC(CCCCCCCCCCC)=O lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
CCSBASE_D26157D84B DG(16:0/16:0) [M+H-H2O]+ 551.503 256.3 OC[C@]([H])(OC(CCCCCCCCCCCCCCCCCCC)=O)COC(CCCCCCCCCCC)=O lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
CCSBASE_4DBA4F4D54 DG(18:2/18:2) [M+H-H2O]+ 599.508 255.9 OC[C@]([H])(OC(CCCCCCC/C=C\CCCCCCCC)=O)COC(CCCC/C=C\C/C=C\C/C=C\CCCCC)=O lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
CCSBASE_86F249DBE6 DG(18:1/18:1) [M+H-H2O]+ 603.543 263.5 OC[C@]([H])(OC(CCCCCCCCCCC/C=C\C/C=C\CCCCC)=O)COC(CCCCCCCCCCCCC)=O lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
CCSBASE_D31B7B5F26 DG(18:0/18:0) [M+H-H2O]+ 607.565 270.5 OC[C@]([H])(OC(CCCCCCCCCCCCCCCCCCCCC)=O)COC(CCCCCCCCCCCCC)=O lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
CCSBASE_B200A0DB6A DG(20:4/20:4) [M+H-H2O]+ 647.508 262.6 OC[C@]([H])(OC(CCCCC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)=O)COC(CCCC/C=C\C/C=C\C/C=C\CCCCC)=O lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
CCSBASE_F181B8173A Cer(d18:1/18:1) [M+H]+ 564.535 257.6 [C@](CO)([H])(NC(CC=CCCCCCCCCCCCCCC)=O)[C@]([H])(O)CC=CCCCCCCCCCCCC lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
CCSBASE_B832438A98 Cer(d18:1/18:0) [M+H]+ 566.552 261.2 [C@](CO)([H])(NC(CCCCCCCCCCCCCCCCC)=O)[C@]([H])(O)CC=CCCCCCCCCCCCC lipid 1 5 TW calibrated with phosphatidylcholines (ESI+) and phosphatidylethanolamines (ESI-)
1 2 ... 156 157 158 159 160 161 162 ... 1698 1699