Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_b5486c3c9b67e8b1c0adff1ef3d00aeb 1,2,3-Benzotriazole [M-H]- 118.0411 129.31 C1=CC2=NNN=C2C=C1 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_6e3be6493c11268df58326e53b30daa1 4-Methyl-2-tert-butylphenol [M-H]- 163.1129 145.87 CC1=CC(=C(C=C1)O)C(C)(C)C Benzenoids -1 29 TW polyala
CCSBASE_a1cd44be484ed36f7f298aa56e70256e Perfluorononanoic acid [M-H]- 462.9632 167.23 C(=O)(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)O Organohalogen compounds -1 29 TW polyala
CCSBASE_7b4dece5d25c1c624e45365b445ca485 3-Chloro-7-hydroxy-4-methyl-2-benzopyrone [M-H]- 209.0011 142.05 CC1=C(C(=O)OC2=C1C=CC(=C2)O)Cl Phenylpropanoids and polyketides -1 29 TW polyala
CCSBASE_6578cd01f735986933f6a4de10503616 Phenylbutazone [M-H]- 307.1452 178.07 CCCCC1C(=O)N(N(C1=O)C2=CC=CC=C2)C3=CC=CC=C3 Benzenoids -1 29 TW polyala
CCSBASE_5610c3a2614f065d26bd4791559da5da Metribuzin-DA [M-H]- 198.0707 149.6 CC(C)(C)C1=NN=C(NC1=O)SC Organosulfur compounds -1 29 TW polyala
CCSBASE_37e5476b60fc44de94138598a3b9176f Siduron [M-H]- 231.1503 165.1 CC1CCCCC1NC(=O)NC2=CC=CC=C2 Benzenoids -1 29 TW polyala
CCSBASE_e37cc158320d01a69781a249830b3a8b Procarbazine hydrochloride [M-H]- 220.1456 159.92 CC(C)NC(=O)C1=CC=C(C=C1)CNNC Benzenoids -1 29 TW polyala
CCSBASE_bb4f0fe9451962fa3a657877da7d8ced 1,3-Benzenedicarboxylic acid, dihydrazide [M-H]- 193.0731 147.01 C1=CC(=CC(=C1)C(=O)NN)C(=O)NN Benzenoids -1 29 TW polyala
CCSBASE_dc0f2ed6c693fcfeeeeeeff28f3c5805 2-Chloro-4-nitroaniline [M-H]- 170.9967 132.5 C1=CC(=C(C=C1[N+](=O)[O-])Cl)N Benzenoids -1 29 TW polyala
1 2 ... 2300 2301 2302 2303 2304 2305 2306 ... 2315 2316