Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_247452f728dc83088ae63de62bc09d2e Formononetin [M-H]- 267.0663 165.26 COC1=CC=C(C=C1)C2=COC3=C(C2=O)C=CC(=C3)O Phenylpropanoids and polyketides -1 29 TW polyala
CCSBASE_12eb84e5551b5569f144221eaa80ef9a (Phenylphosphoryl)bis[(2,4,6-trimethylphenyl)methanone] [M-H]- 417.1625 200.73 CC1=CC(=C(C(=C1)C)C(=O)P(=O)(C2=CC=CC=C2)C(=O)C3=C(C=C(C=C3C)C)C)C Benzenoids -1 29 TW polyala
CCSBASE_310f51ac2702a26aeb56a5eb6cfd1495 Metaflumizone [M-H]- 505.1105 221.43 C1=CC(=CC(=C1)C(F)(F)F)C(=NNC(=O)NC2=CC=C(C=C2)OC(F)(F)F)CC3=CC=C(C=C3)C#N Phenylpropanoids and polyketides -1 29 TW polyala
CCSBASE_5ec3073982b250a67558de36036bd809 Theophylline [M-H]- 179.0575 137.77 CN1C2=C(C(=O)N(C1=O)C)NC=N2 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_4c058925228f1a2609276c58b95c62ab Corticosterone [M-H]- 345.2071 185.97 CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_3407eab8f127a99dcbc14f0a54df9be7 Phenyl 1-hydroxy-2-naphthoate [M-H]- 263.0714 162.59 C1=CC=C(C=C1)OC(=O)C2=C(C3=CC=CC=C3C=C2)O Benzenoids -1 29 TW polyala
CCSBASE_a6408348d032e13b9dba813493a8528f Trinexapac-ethyl [M-H]- 251.0925 164.37 CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 Organic acids and derivatives -1 29 TW polyala
CCSBASE_e3b9ede3124b2a5e6b69da03fa3fadc2 Trinexapac-ethyl [M-H]- 251.0925 179.31 CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 Organic acids and derivatives -1 29 TW polyala
CCSBASE_d268427d79d698c731f89fe666ae1ace 2,4,5-Trichlorophenoxyacetic acid [M-H]- 252.9232 154.52 C1=C(C(=CC(=C1Cl)Cl)Cl)OCC(=O)O Benzenoids -1 29 TW polyala
CCSBASE_64742b767640628af92834c2bc236ab0 2,4,5-Trichlorophenoxyacetic acid [M-H]- 252.9232 168.51 C1=C(C(=CC(=C1Cl)Cl)Cl)OCC(=O)O Benzenoids -1 29 TW polyala
1 2 ... 2304 2305 2306 2307 2308 2309 2310 ... 2315 2316