Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_819a7ce014523eae3d9ffd60fc7a33ec p-Xylenol blue [M-H]- 409.1115 196.28 CC1=CC(=C(C=C1O)C)C2(C3=CC=CC=C3S(=O)(=O)O2)C4=C(C=C(C(=C4)C)O)C Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_f9315bd78caf938f9edbb04dbdfc2f82 Undecanoic delta-lactone [M-H]- 183.1391 156.07 CCCCCCC1CCCC(=O)O1 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_2e9b347f86496022d110a0d7aa2b1598 Undecanoic delta-lactone [M-H]- 183.1391 157.5 CCCCCCC1CCCC(=O)O1 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_edeb6966b23bc5e7d108d4c941e02e6e Nisoldipine [M-H]- 387.1562 190.23 CC1=C(C(C(=C(N1)C)C(=O)OCC(C)C)C2=CC=CC=C2[N+](=O)[O-])C(=O)OC Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_de22080e21b7c8b254565d07f6da4eb4 1-Amino-4-bromo-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid [M-H]- 379.9234 168.33 C1=CC=C2C(=C1)C(=O)C3=C(C=C(C(=C3C2=O)N)S(=O)(=O)O)Br Benzenoids -1 29 TW polyala
CCSBASE_bbd9b11f781e6f7e5f718def47356257 Exifone [M-H]- 277.0354 158.01 C1=CC(=C(C(=C1C(=O)C2=CC(=C(C(=C2)O)O)O)O)O)O Benzenoids -1 29 TW polyala
CCSBASE_d934a62c397b4cb14fffb87d4f3d663f 4-Methylphenyl 3-methylbutanoate [M-H]- 191.1078 149.95 CC1=CC=C(C=C1)OC(=O)CC(C)C Benzenoids -1 29 TW polyala
CCSBASE_6ff754e14ff5971483a63dc0cd0ace3c 4-(Hydroxymethyl)-4-methyl-1-phenylpyrazolidin-3-one [M-H]- 205.0983 150.69 CC1(CN(NC1=O)C2=CC=CC=C2)CO Benzenoids -1 29 TW polyala
CCSBASE_b003b82b416ccbb072ac59ae54cec9ba (4-Aminophenyl)arsonic acid [M-H]- 215.9648 141.77 C1=CC(=CC=C1N)[As](=O)(O)O Benzenoids -1 29 TW polyala
CCSBASE_176ea4234f109c93fcf37a15ae02a5b3 2,5,8,11,14-Pentaoxahexadecan-16-ol [M-H]- 251.15 165.77 COCCOCCOCCOCCOCCO Organic oxygen compounds -1 29 TW polyala
1 2 ... 2303 2304 2305 2306 2307 2308 2309 ... 2315 2316