Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_38cfbe2f51b87ee5832d81125155dd01 YM218 [M+H]+ 617.2934 235.39 CC1=C(C=CO1)C(=O)NC2=CC=C(C=C2)C(=O)N3CCC(C(=CC(=O)N4CCC(CC4)N5CCCCC5)C6=CC=CC=C63)(F)F None 1 29 TW polyala
CCSBASE_0a5ce9f981e7d91280d8234c4bf11984 YM218 [M+Na]+ 639.2753 258.67 CC1=C(C=CO1)C(=O)NC2=CC=C(C=C2)C(=O)N3CCC(C(=CC(=O)N4CCC(CC4)N5CCCCC5)C6=CC=CC=C63)(F)F None 1 29 TW polyala
CCSBASE_285a16eb4f4b611c72b05935aca5f18d UK-156819 [M-H]- 307.1452 183.16 CC1=C(C2=CC=CC=C2N1CCCCC(=O)O)C3=CN=CC=C3 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_76d8a6bba66e37d7565811d9d3ffe9e9 Tralopyril [M-H]- 346.9204 159.1 C1=CC(=CC=C1C2=C(C(=C(N2)C(F)(F)F)Br)C#N)Cl Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_3483f0933e3a3f98325989b824506560 C.I. Basic Red 9 monohydrochloride [M-H]- 286.135 177.32 C1=CC(=N)C=CC1=C(C2=CC=C(C=C2)N)C3=CC=C(C=C3)N Benzenoids -1 29 TW polyala
CCSBASE_57aeae9538411475a3f9f395358c97ad Imazamethabenz [M-H]- 287.1401 172.12 CC1=CC(=C(C=C1)C(=O)OC)C2=NC(C(=O)N2)(C)C(C)C Benzenoids -1 29 TW polyala
CCSBASE_abb2260c17e369fb986b41f8f0ec5bb3 SAR102608 [M-H]- 360.1266 193.49 CC1=CN(C2=C1C=C(C=C2)F)NC(=O)C3=CN=C(N=C3C)C4=CC=CC=N4 Benzenoids -1 29 TW polyala
CCSBASE_4480ad9f4dac4e7e7b4d174ae9464e21 Naproxen [M-H]- 229.087 153.94 CC(C1=CC2=C(C=C1)C=C(C=C2)OC)C(=O)O Benzenoids -1 29 TW polyala
CCSBASE_2aee366bbea644806b3b37f93f7a74b2 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol [M-H]- 208.1092 151.98 CN(CCCC(C1=CN=CC=C1)O)N=O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_d3f1eba91cdcd0c6ef6e78ca52455a57 2,3,4-Trihydroxbenzophenone [M-H]- 229.0506 152.53 C1=CC=C(C=C1)C(=O)C2=C(C(=C(C=C2)O)O)O Benzenoids -1 29 TW polyala
1 2 ... 2296 2297 2298 2299 2300 2301 2302 ... 2315 2316