Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_7e847f5033418adbf87c1cd18cfd0c31 Pinakryptol Yellow [M]+ 335.139 183.18 CCOC1=CC2=C(C=C1)[N+](=C(C=C2)C=CC3=CC(=CC=C3)[N+](=O)[O-])C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_58c624e72ef3d612d472625d410e5997 Pinakryptol Yellow [M]+ 335.139 156.35 CCOC1=CC2=C(C=C1)[N+](=C(C=C2)C=CC3=CC(=CC=C3)[N+](=O)[O-])C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_f4d54223df4713044c7f2cb8fa1f6e61 SR144190 [M+Na]+ 599.2804 240.21 CN(C)C(=O)NC1(CCN(CC1)CCC2(CN(CCO2)C(=O)C3=CC=CC=C3)C4=CC(=C(C=C4)F)F)C5=CC=CC=C5 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_257de2bb4cdb87e15be814185f34fd1d 4'-Sulfamylacetanilide [M+H]+ 215.0485 148.72 CC(=O)NC1=CC=C(C=C1)S(=O)(=O)N Benzenoids 1 29 TW polyala
CCSBASE_c770d76a608216fb81197b807efa42a8 Indapamide [M+H]+ 366.0674 184.65 CC1CC2=CC=CC=C2N1NC(=O)C3=CC(=C(C=C3)Cl)S(=O)(=O)N Benzenoids 1 29 TW polyala
CCSBASE_23583818a57ffff6aea5ba756c17e664 C.I. Disperse Orange 37 [M+H]+ 392.0676 192.29 CCN(CCC#N)C1=CC=C(C=C1)N=NC2=C(C=C(C=C2Cl)[N+](=O)[O-])Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_f464b14e2b9750c3e0c694740bffea3e Myclobutanil [M+H]+ 289.1215 171.48 CCCCC(CN1C=NC=N1)(C#N)C2=CC=C(C=C2)Cl Benzenoids 1 29 TW polyala
CCSBASE_74c90adabcc70369b60034ad85c50a78 Sunitinib malate [M+H]+ 399.2191 201.72 CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_f06e1e56101227e00369019ae7535c2a Dipropan-2-yl butanedioate [M+Na]+ 225.1097 157.74 CC(C)OC(=O)CCC(=O)OC(C)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_2cece3b2dffadd98e9c2d481191b43f4 alpha-Isomethylionone [M+H]+ 207.1743 150.22 CC1=CCCC(C1C=C(C)C(=O)C)(C)C Lipids and lipid-like molecules 1 29 TW polyala
1 2 ... 2295 2296 2297 2298 2299 2300 2301 ... 2315 2316