Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_c01c35afbc3d0a088305ab75ef6583c0 1-(2,6-Dichlorophenyl)-2-indolinone [M+Na]+ 299.9953 167.82 C1C2=CC=CC=C2N(C1=O)C3=C(C=CC=C3Cl)Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_bedc3f021c397b8d2d2fe8b05b966fbe 1,4-Dioxacycloheptadecane-5,17-dione [M+H]+ 271.1904 164.5 C1CCCCCC(=O)OCCOC(=O)CCCCC1 Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_2e0767e593024d05275f7f3ab4f1bca1 1,4-Dioxacycloheptadecane-5,17-dione [M+K]+ 309.1463 169.86 C1CCCCCC(=O)OCCOC(=O)CCCCC1 Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_3b1c768f2c710e731023f56265feeece 1,4-Dioxacycloheptadecane-5,17-dione [M+Na]+ 293.1723 168.76 C1CCCCCC(=O)OCCOC(=O)CCCCC1 Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_2d8f13203d812c070b4ed7ca7d8372d1 1-Phenyl-3-methyl-5-pyrazolone [M+H]+ 175.0866 136.62 CC1=NN(C(=O)C1)C2=CC=CC=C2 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c7f5d4b6d98636233e34c8bb5ed06e41 Nizatidine [M+Cl]- 366.0831 191.9 CNC(=C[N+](=O)[O-])NCCSCC1=CSC(=N1)CN(C)C Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_9884bc4445dd2e63cd1e17f1f87a867f Nizatidine [M+H]+ 332.1209 169.06 CNC(=C[N+](=O)[O-])NCCSCC1=CSC(=N1)CN(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_7c84763f265065c25c84f67010a35dd0 Nizatidine [M+H-H2O]+ 314.1104 170.59 CNC(=C[N+](=O)[O-])NCCSCC1=CSC(=N1)CN(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_86b4e892e4890764e6ffcfec39748a3d Nizatidine [M+K]+ 370.0768 177.8 CNC(=C[N+](=O)[O-])NCCSCC1=CSC(=N1)CN(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_57ba7e69a0d7daca8e6d4984266f0c13 Nizatidine [M+Na]+ 354.1029 175.28 CNC(=C[N+](=O)[O-])NCCSCC1=CSC(=N1)CN(C)C Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2247 2248 2249 2250 2251 2252 2253 ... 2315 2316