Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_e7a72dfaf05c69e8c429eb2b460f272e Tetraisopropyl methylenediphosphonate [M+Na]+ 367.141 182.78 CC(C)OP(=O)(CP(=O)(OC(C)C)OC(C)C)OC(C)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_b5d6e62dd598ae947e81a3c6fbcb5ab9 Bisphenol B [M-H]- 241.1234 160.4 CCC(C)(C1=CC=C(C=C1)O)C2=CC=C(C=C2)O Benzenoids -1 29 TW polyala
CCSBASE_e724ea02e314a2a4be80d9fe150884bf (Z)-9-Octadecenylamine [M+H]+ 268.2999 182.34 CCCCCCCCC=CCCCCCCCCN Organic nitrogen compounds 1 29 TW polyala
CCSBASE_5c6ed080792d3d30b215705144c24369 5alpha-Dihydrotestosterone [M+H]+ 291.2319 173.88 CC12CCC(=O)CC1CCC3C2CCC4(C3CCC4O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_7ffbf4e66473d9d6a657c198f642e2be 5alpha-Dihydrotestosterone [M+H-H2O]+ 273.2214 167.76 CC12CCC(=O)CC1CCC3C2CCC4(C3CCC4O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_69d2626fd1ab81c6b3d8d914b61a6643 Pyriproxyfen [M+H]+ 322.1438 181.59 CC(COC1=CC=C(C=C1)OC2=CC=CC=C2)OC3=CC=CC=N3 Benzenoids 1 29 TW polyala
CCSBASE_3491260d1bcada434a7cc196c705c619 Pyriproxyfen [M+Na]+ 344.1257 185.38 CC(COC1=CC=C(C=C1)OC2=CC=CC=C2)OC3=CC=CC=N3 Benzenoids 1 29 TW polyala
CCSBASE_f4860c1c95b3b640e7ee09cec63d116f Ethyl chrysanthemate [M+FA-H]- 241.1445 159.95 CCOC(=O)C1C(C1(C)C)C=C(C)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_c0f794b7efd6071530cc181be28e67f5 (3Z)-Hex-3-en-1-yl 3-methylbutanoate [M+FA-H]- 229.1445 156.43 CCC=CCCOC(=O)CC(C)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_da3c35220be53437fab42127dac7b2ee Sulfan blue [M+H]+ 546.1847 240.13 CCN(CC)C1=CC=C(C=C1)C(=C2C=CC(=[N+](CC)CC)C=C2)C3=C(C=C(C=C3)S(=O)(=O)[O-])S(=O)(=O)[O-] Benzenoids 1 29 TW polyala
1 2 ... 2147 2148 2149 2150 2151 2152 2153 ... 2315 2316