Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_586304611bdb2d22433eb501d522de50 Fenamiphos sulfone [M+H]+ 336.1029 178.23 CCOP(=O)(NC(C)C)OC1=CC(=C(C=C1)S(=O)(=O)C)C Benzenoids 1 29 TW polyala
CCSBASE_f4ebeb8af69b618c0e587d3d29f99b76 Fenamiphos sulfone [M+Na]+ 358.0848 177.67 CCOP(=O)(NC(C)C)OC1=CC(=C(C=C1)S(=O)(=O)C)C Benzenoids 1 29 TW polyala
CCSBASE_eaeb568138b41de712a3496de97c4a7e Fenamiphos sulfone [M-H]- 334.0883 177.95 CCOP(=O)(NC(C)C)OC1=CC(=C(C=C1)S(=O)(=O)C)C Benzenoids -1 29 TW polyala
CCSBASE_22e7860c7ec40c5203f72f8c6abdc415 Methyl red [M+H]+ 270.1237 161.25 CN(C)C1=CC=C(C=C1)N=NC2=CC=CC=C2C(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_3200780ca6599d66c0234eeb587a7a8a Methyl red [M+H-H2O]+ 252.1132 154.36 CN(C)C1=CC=C(C=C1)N=NC2=CC=CC=C2C(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_9432890615a41c92169fa4c5a97ee187 Methyl red [M+Na]+ 292.1056 175.2 CN(C)C1=CC=C(C=C1)N=NC2=CC=CC=C2C(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_af8308739e435c1b3662fd52b12ec5a1 Methyl red [M-H]- 268.1091 174.25 CN(C)C1=CC=C(C=C1)N=NC2=CC=CC=C2C(=O)O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_277b3f8d822f50c325db6323020d9e2e Ethylenediaminetetraacetic acid [M-H]- 291.0834 156.65 C(CN(CC(=O)O)CC(=O)O)N(CC(=O)O)CC(=O)O Organic acids and derivatives -1 29 TW polyala
CCSBASE_92bc79dd09a11aa43107fbaaaed59b2e Dexamethasone sodium phosphate [M+H]+ 473.1735 198.51 CC1CC2C3CCC4=CC(=O)C=CC4(C3(C(CC2(C1(C(=O)COP(=O)([O-])[O-])O)C)O)F)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_991a48574c92ced4044a4b0d5cbf94a6 Dexamethasone sodium phosphate [M+H-H2O]+ 455.163 198.25 CC1CC2C3CCC4=CC(=O)C=CC4(C3(C(CC2(C1(C(=O)COP(=O)([O-])[O-])O)C)O)F)C Lipids and lipid-like molecules 1 29 TW polyala
1 2 ... 2151 2152 2153 2154 2155 2156 2157 ... 2315 2316