Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_25581187619ae42ffd17f901db60565f Hexanoic acid [M+Na]+ 139.0729 125.65 CCCCCC(=O)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_6849c07dd00b485010662ab829b8fd68 Imazapic [M+H]+ 276.1343 162.85 CC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)O Organic acids and derivatives 1 29 TW polyala
CCSBASE_e538458a575fb2e564a8e7d14cdc4160 Imazapic [M+H-H2O]+ 258.1238 157.34 CC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)O Organic acids and derivatives 1 29 TW polyala
CCSBASE_273f1aa0cf10cd23ca4a47ee4a527da4 Imazapic [M-H]- 274.1197 160.53 CC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)O Organic acids and derivatives -1 29 TW polyala
CCSBASE_046e0d5bae5e9f20f8df12f342351240 Imazapic [M-H]- 274.1197 169.52 CC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)O Organic acids and derivatives -1 29 TW polyala
CCSBASE_ad9b899a786c31afe16afc07defbac87 MK-578 [M+H]+ 575.3756 243.93 CCN1C(=CC(=N1)CC2=CC=CC=C2)C3CCN(CC3)CC4CC(CC4C5=CC(=CC=C5)F)N(C)C(C(C)C)C(=O)O Organic acids and derivatives 1 29 TW polyala
CCSBASE_2f3b192256b656e19ba04c41c9107941 Fluazinam [M-H]- 462.9441 183.9 C1=C(C=NC(=C1Cl)NC2=C(C=C(C(=C2[N+](=O)[O-])Cl)C(F)(F)F)[N+](=O)[O-])C(F)(F)F Benzenoids -1 29 TW polyala
CCSBASE_e46676ceb91aa59f8207e3bfb3132e68 Difenzoquat metilsulfate [M]+ 249.1386 160.69 CN1C(=CC(=[N+]1C)C2=CC=CC=C2)C3=CC=CC=C3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_859eb6a478e3848f0925892ed729010c Zamifenacin [M+H]+ 416.222 200.96 C1CC(CN(C1)CCC2=CC3=C(C=C2)OCO3)OC(C4=CC=CC=C4)C5=CC=CC=C5 Benzenoids 1 29 TW polyala
CCSBASE_af8f2c597c717a550db2bc166fae9b03 Tricaprylin [M-H]- 469.3534 213.35 CCCCCCCC(=O)OCC(COC(=O)CCCCCCC)OC(=O)CCCCCCC Lipids and lipid-like molecules -1 29 TW polyala
1 2 ... 1963 1964 1965 1966 1967 1968 1969 ... 2315 2316