Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_fd5af55c4379902b0015d7abe883f177 Diisodecyl hexanedioate [M+FA-H]- 471.3691 214.43 CC(C)CCCCCCCOC(=O)CCCCC(=O)OCCCCCCCC(C)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_32d2e72c290770acf7792e8799d7ccf8 Diisodecyl hexanedioate [M-H-H2O]- 407.3525 203.02 CC(C)CCCCCCCOC(=O)CCCCC(=O)OCCCCCCCC(C)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_3fc57e36787a64a9c5a56d9436a6a7c9 Fluconazole [M+H]+ 307.1113 163.71 C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O Benzenoids 1 29 TW polyala
CCSBASE_085ae1e57e9e665e6bac1e4c01a23285 Fluconazole [M+H-H2O]+ 289.1008 157.08 C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O Benzenoids 1 29 TW polyala
CCSBASE_5e734907fa845a2bc4ab9bcd66b5f4de Fluvastatin [M+H]+ 412.1919 195.72 CC(C)N1C2=CC=CC=C2C(=C1C=CC(CC(CC(=O)O)O)O)C3=CC=C(C=C3)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_ae689adf0c0f531b51309b9db919eb5b Fluvastatin [M+H-H2O]+ 394.1814 189.35 CC(C)N1C2=CC=CC=C2C(=C1C=CC(CC(CC(=O)O)O)O)C3=CC=C(C=C3)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_9270d11c0baaea3c73fc87a0ba6b5276 Fluvastatin [M-H]- 410.1773 200.12 CC(C)N1C2=CC=CC=C2C(=C1C=CC(CC(CC(=O)O)O)O)C3=CC=C(C=C3)F Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_9c4346cb1a68c8e0cb8114d7b2ec955d Napropamide [M+H]+ 272.1645 163.21 CCN(CC)C(=O)C(C)OC1=CC=CC2=CC=CC=C21 Benzenoids 1 29 TW polyala
CCSBASE_276bfc6609e0d0baf196b2cca1ccba4f Imazaquin [M+H]+ 312.1343 171.35 CC(C)C1(C(=O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=O)O)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_db1cb0c4b2b4dac5d9dc47385534cf08 Imazaquin [M+H-H2O]+ 294.1238 165.56 CC(C)C1(C(=O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=O)O)C Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 1966 1967 1968 1969 1970 1971 1972 ... 2315 2316