Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_2989e6a10fc2e180917389299b22e9ac N,N-Dicyclohexyl-2-benzothiazolesulfenamide [M+H-H2O]+ 329.1505 167.99 C1CCC(CC1)N(C2CCCCC2)SC3=NC4=CC=CC=C4S3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_80ebd11725ef61ec1afc6d67226485e3 N,N-Dicyclohexyl-2-benzothiazolesulfenamide [M+Na]+ 369.143 175.88 C1CCC(CC1)N(C2CCCCC2)SC3=NC4=CC=CC=C4S3 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_ad4cdc93b44decd76897072eeaecc452 N,N-Dicyclohexyl-2-benzothiazolesulfenamide [M-H]- 345.1464 176.53 C1CCC(CC1)N(C2CCCCC2)SC3=NC4=CC=CC=C4S3 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_b113d4b43903eabe4eaa6613c712adde Sulfathiazole sodium [M+H]+ 256.0209 151.54 C1=CC(=CC=C1N)S(=O)(=O)[N-]C2=NC=CS2 Benzenoids 1 29 TW polyala
CCSBASE_b1b53610cf4271f04b58fe48e1f62b24 Sulfathiazole sodium [M+Na]+ 278.0028 163.28 C1=CC(=CC=C1N)S(=O)(=O)[N-]C2=NC=CS2 Benzenoids 1 29 TW polyala
CCSBASE_41d7ecf8168d8304b8531b3b140ee03f Sulfathiazole sodium [M-H]- 254.0063 155.01 C1=CC(=CC=C1N)S(=O)(=O)[N-]C2=NC=CS2 Benzenoids -1 29 TW polyala
CCSBASE_1abfdedc26ba8d67704daaa9466954eb 4-Isopropylbenzaldehyde [M+H]+ 149.0961 130.71 CC(C)C1=CC=C(C=C1)C=O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_913e277a3452c4fd83d1f4a1ec1f7167 Clothianidin [M-H]- 248.0014 153.55 CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_9b21cf2b6b1ae703036e46f6262f4ef3 2,4-Di-tert-butylphenol [M-H]- 205.1598 159.51 CC(C)(C)C1=CC(=C(C=C1)O)C(C)(C)C Benzenoids -1 29 TW polyala
CCSBASE_ea5201045b64435d9260a500cac8195f 3-(Dimethylphosphono)-N-methylolpropionamide [M+Na]+ 234.0502 142.89 COP(=O)(CCC(=O)NCO)OC Organic acids and derivatives 1 29 TW polyala
1 2 ... 1970 1971 1972 1973 1974 1975 1976 ... 2315 2316