Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_1e40dccaad52188a0c8ab820193a28d2 C.I. Solvent Orange 7 [M-H-H2O]- 257.1079 158.08 CC1=CC(=C(C=C1)N=NC2=C(C=CC3=CC=CC=C32)O)C Benzenoids -1 29 TW polyala
CCSBASE_af97a4b576b8aee86743790ef4670def Formetanate hydrochloride [M+H]+ 222.1237 154.76 CNC(=O)OC1=CC=CC(=C1)N=CN(C)C Benzenoids 1 29 TW polyala
CCSBASE_e544089f76cc2c6b2e98f543578a5513 Atrazine [M+H]+ 216.101 150.02 CCNC1=NC(=NC(=N1)Cl)NC(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_7d3688a740e3e30569f69155a3eb573b Coumatetralyl [M+H]+ 293.1172 164.29 C1CC(C2=CC=CC=C2C1)C3=C(C4=CC=CC=C4OC3=O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_fb0bf51cf3355b7cb0e79a7eeb16d435 Coumatetralyl [M+Na]+ 315.0992 171.28 C1CC(C2=CC=CC=C2C1)C3=C(C4=CC=CC=C4OC3=O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_96cc180bbe7bad1d8bd1f66784e22099 Coumatetralyl [M-H]- 291.1026 169.19 C1CC(C2=CC=CC=C2C1)C3=C(C4=CC=CC=C4OC3=O)O Phenylpropanoids and polyketides -1 29 TW polyala
CCSBASE_0a5e15c602a1e769c34cab5501726770 Oxamyl [M+Na]+ 242.057 149.31 CNC(=O)O/N=C(/C(=O)N(C)C)\SC Organic acids and derivatives 1 29 TW polyala
CCSBASE_a3f32130e45b36ad7a06fe6d7a621b74 Fluoxastrobin [M+H]+ 459.0866 202.5 CO/N=C(\C1=CC=CC=C1OC2=C(C(=NC=N2)OC3=CC=CC=C3Cl)F)/C4=NOCCO4 Organic oxygen compounds 1 29 TW polyala
CCSBASE_268fe3312eb51c7ece60cb2d7593c9a9 Fluoxastrobin [M+Na]+ 481.0685 206.49 CO/N=C(\C1=CC=CC=C1OC2=C(C(=NC=N2)OC3=CC=CC=C3Cl)F)/C4=NOCCO4 Organic oxygen compounds 1 29 TW polyala
CCSBASE_3b49c2272bcc00667cfd0a79ac0d0dd2 Besonprodil [M+H]+ 403.1486 199.19 C1CN(CCC1CC2=CC=C(C=C2)F)CCS(=O)C3=CC4=C(C=C3)NC(=O)O4 Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 1961 1962 1963 1964 1965 1966 1967 ... 2315 2316