Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_6773b6030dbdc7bdd860225e50adc472 Sodium myristyl sulfate [M+Cl]- 329.1559 174.81 CCCCCCCCCCCCCCOS(=O)(=O)[O-] Organic acids and derivatives -1 29 TW polyala
CCSBASE_ff41356ca23ef4e2539294c0a57f217c Quinclorac [M+H]+ 241.977 139.54 C1=CC(=C(C2=NC=C(C=C21)Cl)C(=O)O)Cl  Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c300ffd618172b64542387a2c1b728ea Quinclorac [M+H-H2O]+ 223.9665 135.62 C1=CC(=C(C2=NC=C(C=C21)Cl)C(=O)O)Cl  Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_367065c292434ed9bc528b60f0c7934a Dinoterb [M-H]- 239.0673 153.13 CC(C)(C)C1=C(C(=CC(=C1)[N+](=O)[O-])[N+](=O)[O-])O Benzenoids -1 29 TW polyala
CCSBASE_e221b47be9f70fe7ed4c3f1c301e7255 3-((Ethylphenylamino)methyl)benzenesulfonic acid [M+H]+ 292.1002 166.08 CCN(CC1=CC(=CC=C1)S(=O)(=O)O)C2=CC=CC=C2 Benzenoids 1 29 TW polyala
CCSBASE_44b253d3f59120fa6c228ac253635fa0 3-((Ethylphenylamino)methyl)benzenesulfonic acid [M+Na]+ 314.0821 176.36 CCN(CC1=CC(=CC=C1)S(=O)(=O)O)C2=CC=CC=C2 Benzenoids 1 29 TW polyala
CCSBASE_35d944c0a253e92bce3553e8a65c04e5 3-((Ethylphenylamino)methyl)benzenesulfonic acid [M-H]- 290.0856 175.2 CCN(CC1=CC(=CC=C1)S(=O)(=O)O)C2=CC=CC=C2 Benzenoids -1 29 TW polyala
CCSBASE_4a2c64be0cb53b9f3d6f8072f8e47d46 4-Methoxyaniline hydrochloride [M+H]+ 124.0757 130.23 COC1=CC=C(C=C1)N Benzenoids 1 29 TW polyala
CCSBASE_fca25185b6be9192f9935630f4f831ad (3Z)-Hex-3-en-1-yl propanoate [M+FA-H]- 201.1132 148.62 CCC=CCCOC(=O)CC Organic acids and derivatives -1 29 TW polyala
CCSBASE_46a5964580070329ae1106d18bb0edd0 (3Z)-Hex-3-en-1-yl propanoate [M+Na]+ 179.1042 138.28 CCC=CCCOC(=O)CC Organic acids and derivatives 1 29 TW polyala
1 2 ... 1959 1960 1961 1962 1963 1964 1965 ... 2315 2316