Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_06f206941c59e97445bbc408ab650317 16:0(2S-OH) Ceramide [M+Na]+ 576.4962026 253.366666667 CCCCCCCCCCCCCC[C@@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_6dbdb6e9bb7320e500bc4f69d617705b 16:0(2S-OH) Ceramide [M+H]+ 554.51425867 259.1 CCCCCCCCCCCCCC[C@@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_252acb21eb2f2152c0b336cd43316ad1 16:0(2S-OH) Ceramide [M+H-H2O]+ 536.503688 259.566666667 CCCCCCCCCCCCCC[C@@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_fc27910663977ddf471c3a651ca26b11 16:0(2S-OH) Ceramide [M-H]- 552.4997062 252.833333333 CCCCCCCCCCCCCC[C@@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_967bc1b18478e20c831bebe5336e4d44 16:0(alkyne)-18:1 PC [M+Na]+ 778.5356962 285.033333333 CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCC#C)COP(=O)([O-])OCC[N+](C)(C)C None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_86d935c56b65bb165e7c2b0a55e250c9 16:0(alkyne)-18:1 PC [M+H]+ 756.55375227 282.2 CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCC#C)COP(=O)([O-])OCC[N+](C)(C)C None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_fd6c89a6389c3a3184bf908ab99aca70 16:0(alkyne)-18:1 PC [M+HCOO]- 800.544679 290.6 CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCC#C)COP(=O)([O-])OCC[N+](C)(C)C None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_fbb0c733849030db3e729478204375e7 16:0(alkyne)-18:1 PE [M+Na]+ 736.4887486 277.366666667 CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCC#C)COP(=O)([O-])OCC[NH3+] None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_400a82e626d1d76a74bc5a4e95e8292c 16:0(alkyne)-18:1 PE [M+H]+ 714.50680467 270.833333333 CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCC#C)COP(=O)([O-])OCC[NH3+] None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_2a6bbf23e352b4ae2933eaf8684f12e0 16:0(alkyne)-18:1 PE [M-H]- 712.4922522 267.266666667 CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCC#C)COP(=O)([O-])OCC[NH3+] None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
1 2 ... 1744 1745 1746 1747 1748 1749 1750 ... 2315 2316