Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_2dc22235b8d97f7f337c14f00be124e7 16:0-(12-PAHSA) PC [M+H]+ 1016.82526787 337.766666667 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_aafc8291c33ce4444368fdb43c84a53f 16:0-(12-PAHSA) PC [M+HCOO]- 1060.8161946 342.97 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_d8472f50ed77ab0d79c20dc02b83fb4b 16:0-(12-PAHSA)-18:1 TG [M+Na]+ 1137.9970368 366.3 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_bbf548fca36b2f9d4021e4ad03843885 16:0-(12-PAHSA)-18:1 TG [M+NH4]+ 1133.0416402 366.8 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_6078f4b8f96d85de719f3915ac6cfc9c 16:0(2R-OH) Ceramide [M+Na]+ 576.4962026 256.533333333 CCCCCCCCCCCCCC[C@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_d18ac0e6b0ea65418140882b7a821378 16:0(2R-OH) Ceramide [M+H]+ 554.51425867 260.0 CCCCCCCCCCCCCC[C@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_ca6d6e98a5c6ab03172bd20677cca55f 16:0(2R-OH) Ceramide [M+H-H2O]+ 536.503688 259.83 CCCCCCCCCCCCCC[C@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_6c7502eabb7474afe458440b71d5f81d 16:0(2R-OH) Ceramide [M-H]- 552.4997062 260.466666667 CCCCCCCCCCCCCC[C@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_9f423e72e566dc3406cbea57600dc5f5 16:0(2R-OH) Ceramide [M+Cl]- 588.4763838 254.233333333 CCCCCCCCCCCCCC[C@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_93bd0eb701f01087c3e21c8c46823542 16:0(2R-OH) Ceramide [M+HCOO]- 598.5051854 260.2 CCCCCCCCCCCCCC[C@H](C(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O)O Organic oxygen compounds -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
1 2 ... 1743 1744 1745 1746 1747 1748 1749 ... 2315 2316