Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_7434fc3688cd318a4cc5eeee74a00fde N-(3-Aminophenyl)propanamide [M+H]+ 165.1022 135.83 CCC(=O)NC1=CC=CC(=C1)N Benzenoids 1 29 TW polyala
CCSBASE_00d9f70de5d638d3c1249a70db1d15ad Coumaphos [M+H]+ 363.0217 179.04 CCOP(=S)(OCC)OC1=CC2=C(C=C1)C(=C(C(=O)O2)Cl)C Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_53211294de3779f9a0c8552446748c22 Coumaphos [M+Na]+ 385.0037 198.33 CCOP(=S)(OCC)OC1=CC2=C(C=C1)C(=C(C(=O)O2)Cl)C Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_fd0716f0dc72349dffd37ea0647ed634 4'-Acetylbiphenyl [M+H]+ 197.0961 143.21 CC(=O)C1=CC=C(C=C1)C2=CC=CC=C2 Organic oxygen compounds 1 29 TW polyala
CCSBASE_49167075047399b2ecebb8a97bea23df 2,2'-(Oxydimethanediyl)bis(2-ethylpropane-1,3-diol) [M+H]+ 251.1853 155.44 CCC(CO)(CO)COCC(CC)(CO)CO Organic oxygen compounds 1 29 TW polyala
CCSBASE_c41efdfc28f1ca8b9dd456301bbf4b1b N-Cyanoethyl-hydroxyethyl aniline [M+H]+ 191.1179 141.48 C1=CC=C(C=C1)N(CCC#N)CCO Organic nitrogen compounds 1 29 TW polyala
CCSBASE_b230b0ee6156e97a559f07e77e1c1c82 N-Cyanoethyl-hydroxyethyl aniline [M+H-H2O]+ 173.1074 138.31 C1=CC=C(C=C1)N(CCC#N)CCO Organic nitrogen compounds 1 29 TW polyala
CCSBASE_dcfdc8cba5a54d0a309962c2a8c49e2e Calcium pantothenate [M+H]+ 220.1179 147.16 CC(C)(CO)C(C(=O)NCCC(=O)[O-])O Organic acids and derivatives 1 29 TW polyala
CCSBASE_5d315d98848477a85f8b8a3ec508d91f Calcium pantothenate [M+H-H2O]+ 202.1074 144.04 CC(C)(CO)C(C(=O)NCCC(=O)[O-])O Organic acids and derivatives 1 29 TW polyala
CCSBASE_5da42c1191dac89cd6db4dbd307db9e3 Fenoxaprop-(2S)-ethyl [M+H]+ 362.079 187.93 CCOC(=O)C(C)OC1=CC=C(C=C1)OC2=NC3=C(O2)C=C(C=C3)Cl Benzenoids 1 29 TW polyala
1 2 ... 2291 2292 2293 2294 2295 2296 2297 ... 2315 2316