Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_c21b5ed039bf41e7b9945596fdcc31ce Lepidine [M+H]+ 144.0808 126.96 CC1=CC=NC2=CC=CC=C12 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_1d71fd04aa534625b2f3873c3aceae3e CITCO [M+H]+ 435.9839 200.83 C1=CC(=CC=C1C2=C(N3C=CSC3=N2)C=NOCC4=CC(=C(C=C4)Cl)Cl)Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c594d4cf19364ded550a90df27332c60 Fluorescein sodium [M+H]+ 333.0758 171.54 C1=CC=C(C(=C1)C2=C3C=CC(=O)C=C3OC4=C2C=CC(=C4)O)C(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_0c83e8511fb0630140606218cd1f91a8 Ethametsulfuron-methyl [M+H]+ 411.1081 193.29 CCOC1=NC(=NC(=N1)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC)NC Organic nitrogen compounds 1 29 TW polyala
CCSBASE_12f65929f6a6ebba0e90e3c690fde49a Isoproturon [M+H]+ 207.1492 151.88 CC(C)C1=CC=C(C=C1)NC(=O)N(C)C Benzenoids 1 29 TW polyala
CCSBASE_ef86246b605503ce295891aee2de5364 Isoproturon [M+Na]+ 229.1311 158.07 CC(C)C1=CC=C(C=C1)NC(=O)N(C)C Benzenoids 1 29 TW polyala
CCSBASE_91968df0ed6698c7f5a39e3fa21cc215 Perindopril erbumine [M+H]+ 369.2384 187.89 CCCC(C(=O)OCC)NC(C)C(=O)N1C2CCCCC2CC1C(=O)O Organic acids and derivatives 1 29 TW polyala
CCSBASE_982f3d5ccf77af33f816c92d3ea17116 Perindopril erbumine [M+Na]+ 391.2203 194.22 CCCC(C(=O)OCC)NC(C)C(=O)N1C2CCCCC2CC1C(=O)O Organic acids and derivatives 1 29 TW polyala
CCSBASE_a81c96717c329ff7ba0a4a1d1783b6f6 4-Hydroxy-7-(phenylamino)naphthalene-2-sulfonic acid [M+H]+ 316.0638 175.03 C1=CC=C(C=C1)NC2=CC3=CC(=CC(=C3C=C2)O)S(=O)(=O)O Benzenoids 1 29 TW polyala
CCSBASE_36f61d99024c80405d8f51dadb230881 Scopolamine hydrochloride [M+H]+ 304.1543 171.19 CN1C2CC(CC1C3C2O3)OC(=O)C(CO)C4=CC=CC=C4 Organic acids and derivatives 1 29 TW polyala
1 2 ... 2288 2289 2290 2291 2292 2293 2294 ... 2315 2316