Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_a28b112f2406e9fdfd91fe2850dbc94a 2-Isopropylphenol [M+H-H2O]+ 119.0856 125.0 CC(C)C1=CC=CC=C1O Benzenoids 1 29 TW polyala
CCSBASE_93f2e2df9369283e40338e5cace99cc1 Fensulfothion [M+H]+ 309.0379 171.16 CCOP(=S)(OCC)OC1=CC=C(C=C1)S(=O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_4d58d824c14504a2815e743f6f16f99c Fensulfothion [M+Na]+ 331.0198 167.95 CCOP(=S)(OCC)OC1=CC=C(C=C1)S(=O)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_84b804e88befd399cf845031cb38d104 N-Nitroso-N-methyl-4-nitroaniline [M-H-H2O]- 162.0303 129.31 CN(C1=CC=C(C=C1)[N+](=O)[O-])N=O Benzenoids -1 29 TW polyala
CCSBASE_c88d9b9992b149a9eab15c6244ba237f Buspirone [M+H]+ 386.2551 195.67 C1CCC2(C1)CC(=O)N(C(=O)C2)CCCCN3CCN(CC3)C4=NC=CC=N4 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_ba40e2ace2e2d9bc7b1f6a1b761705b7 Buspirone [M+Na]+ 408.237 199.95 C1CCC2(C1)CC(=O)N(C(=O)C2)CCCCN3CCN(CC3)C4=NC=CC=N4 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_bbbe59e9cf931f7bbb5dba6ec2b335c8 Digitoxin [M+FA-H]- 809.4329 283.14 CC1C(C(CC(O1)OC2C(OC(CC2O)OC3C(OC(CC3O)OC4CCC5(C(C4)CCC6C5CCC7(C6(CCC7C8=CC(=O)OC8)O)C)C)C)C)O)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_83d78dc38027804f4cea3eac0ad08e78 Cloransulam-methyl [M+H]+ 430.0383 189.6 CCOC1=NC(=CC2=NC(=NN21)S(=O)(=O)NC3=C(C=CC=C3Cl)C(=O)OC)F Benzenoids 1 29 TW polyala
CCSBASE_a9442ab2e8f89e3171913e2adcf6f508 Cloransulam-methyl [M+Na]+ 452.0202 189.31 CCOC1=NC(=CC2=NC(=NN21)S(=O)(=O)NC3=C(C=CC=C3Cl)C(=O)OC)F Benzenoids 1 29 TW polyala
CCSBASE_50a21849fa57aed57d9de4c682041e4f Cloransulam-methyl [M-H]- 428.0237 189.33 CCOC1=NC(=CC2=NC(=NN21)S(=O)(=O)NC3=C(C=CC=C3Cl)C(=O)OC)F Benzenoids -1 29 TW polyala
1 2 ... 2243 2244 2245 2246 2247 2248 2249 ... 2315 2316